[2] |
WANG X F,ZENG X W,YANG X L,et al. Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling[J]. Applied Energy,2018,209:127–139.
|
[3] |
LIU M M,YANG M,WANG H J. Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand[J]. Ocean Engineering,2014,82:169–179.
|
[6] |
梁发云,李彦初,黄茂松. 基于Pasternak双参数地基模型水平桩简化分析方法[J]. 岩土工程学报,2013,35(增1):300–304.(LIANG Fayun,LI Yanchu,HUANG Maosong. Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering,2013,35(Supp.1):300–304.(in Chinese))
|
[8] |
BROWN D A,MORRISON C,REESE L C. Lateral load behavior of pile group in sand[J]. Journal of Geotechnical Engineering,1988,114(11):1 261–1 276.
|
[10] |
LI J L,GUAN D W,CHIEW Y M,et al. Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading[J]. Ocean Engineering,2020,217:107893.
|
[11] |
STANIER S A,BLABER J,TAKE W A,et al. Improved image-based deformation measurement for geotechnical applications[J]. Canadian Geotechnical Journal,2016,53(5):727–739.
|
[4] |
DOHERTY P,GAVIN K. Laterally loaded monopile design for offshore wind farms[J]. Proceedings of the Institution of Civil Engineers-Energy,2012,165(1):7–17.
|
[12] |
WHITE D J,TAKE W A,BOLTON M D. Soil deformation measurement using particle image velocimetry(PIV) and photogrammetry[J]. Geotechnique,2003,53(7):619–631.
|
[14] |
马小峰,邹亚荣,刘善伟. 基于分形维数理论的海岸线遥感分类与变迁研究[J]. 海洋开发与管理,2015,32(1):30–33.(MA Xiaofeng,ZOU Yarong,LIU Shanwei. A study on remote sensing classification and variation of coastline based on fractal dimension theory[J]. Ocean Development and Management,2015,32(1):30–33.(in Chinese))
|
[16] |
CARPINETI M,ROSSONI A,SENESE A,et al. Multifractal analysis of glaciers in the Lombardy region of the Italian Alps[J]. Journal of Physics-Complexity,2021,2(2):025003.
|
[18] |
SAHITYA K S,PRASAD C S R K. Fractal modelling of an urban road network using Geographical Information Systems(GIS)[J]. World Review of Intermodal Transportation Research,2020,9(4):376–392.
|
[20] |
张志镇,高 峰,高亚楠,等. 高温影响下花岗岩孔径分布的分形结构及模型[J]. 岩石力学与工程学报,2016,35(12):2 426–2 438. (ZHANG Zhizhen,GAO Feng,GAO Yanan,et al. Fractal structure and model of pore size distribution of granite under high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2 426–2 438.(in Chinese))
|
[22] |
QIN N,YE F,HE B A,et al. Model study on backfill grouting in shield tunnels based on fractal theory[J]. European Journal of Environmental and Civil Engineering,2022,26(12):5 901–5 911.
|
[24] |
竺明星,尹 倩,龚维明,等. 基于Akima插值理论的水平试桩数据处理方法研究[J]. 岩土工程学报,2020,42(增1):80–84.(ZHU Mingxing,YIN Qian,GONG Weiming,et al. Data processing method for laterally loaded trial piles based on Akima interpolation theory[J]. Chinese Journal of Geotechnical Engineering,2020,42(Supp.1):80–84.(in Chinese))
|
[26] |
袁炳祥,吴跃东,陈 锐,等. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报:工学版,2016,50(10):2 031–2 036. (YUAN Bingxiang,WU Yuedong,CHEN Rui,et al. Model tests on displacement field of internal soil induced by laterally loaded piles[J]. Journal of Zhejiang University:Engineering Science,2016,50(10):2 031–2 036.(in Chinese))
|
[28] |
袁炳祥,樊立韬,李志杰,等. 层状地基中水平受荷桩–土相互作用试验研究[J]. 中国公路学报,2022,35(11):62–72.(YUAN Bingxiang,FAN Litao,LI Zhijie,et al. Experimental study on pile-soil interaction under horizontal load in layered foundation[J]. China Journal of Highway and Transport,2022,35(11):62–72.(in Chinese))
|
[30] |
李庆桐,黄宏伟. 基于数字图像的盾构隧道衬砌裂缝病害诊断[J].岩石力学与工程学报,2020,39(8):1 658–1 670.(LI Qingtong,HUANG Hongwei. Diagnosis of structural cracks of shield tunnel lining based on digital images[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1 658–1 670.(in Chinese))
|
[32] |
SALGADO R,BANDINI P,KARIM A. Shear strength and stiffness of silty sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(8):763–764.
|
[34] |
WANG C Y,LIU H L,DING X M,et al. Study on horizontal bearing characteristics of pile foundations in coral sand[J]. Canadian Geotechnical Journal,2021,58(12):1 928–1 942.
|
[36] |
WANG Y,ZHU M X,GONG W M,et al. Lateral behavior of monopiles considering the effects of sand subsidence and densification under lateral cyclic loading[J/OL]. Marine Georesources and Geotechnology,https://doi.org/10.1080/1064119X.2021.2002985,2021–11–15.
|
[1] |
VAN DER MALE P,VERJASSOLA M,VAN DALEN K N. Decoupled modelling approaches for environmental interactions with monopile-based offshore wind support structures[J]. Energies,2020,13(19):5 195.
|
[9] |
CUéLLAR P,GEORGI S,BAE?LER M,et al. On the quasi-static granular convective flow and sand densification around pile foundations under cyclic lateral loading[J]. Granular Matter,2012,14(1):11–25.
|
[17] |
陈彦光. 分形城市与城市规划[J]. 城市规划,2005,(2):33–40.(CHEN Yanguang. Fractal cities and urban planning[J]. City Planning Review,2005,(2):33–40.(in Chinese))
|
[25] |
YUN W C,KIM D. Experimental development of the p-y relationship for large-diameter offshore monopiles in sands:centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2016,142(1):04015058.
|
[33] |
GOUDARZY M,KONIG D,SCHANZ T. Small strain stiffness of granular materials containing fines[J]. Soils and Foundations,2016,56(5):756–764.
|
[41] |
LI J L,GUAN D W,CHIEW Y M,et al. Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading[J]. Ocean Engineering,2020,217:107893.
|
[7] |
竺明星,卢红前,戴国亮,等. 基于侧阻硬化与软化模型的大直径桩基水平承载力研究[J]. 岩土工程学报,2018,40(增2):132–136. (ZHU Mingxing,LU Hongqian,DAI Guoliang,et al. Lateral bearing capacity of large-diameter pile foundation based on hardening and softening models of side resistance[J]. Chinese Journal of Geotechnical Engineering,2018,40(Supp.2):132–136.(in Chinese))
|
[15] |
CLEMENZI I,PELLICCIOTTI F,BURLANDO P. Snow depth structure,fractal behavior,and interannual consistency over haut Glacier d'Arolla Switzerland[J]. Water Resources Research,2018,54(10):7 929–7 945.
|
[23] |
ZHANG Y,ZHONG X Y,LIN J S,et al. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of Southern China[J]. Geomorphology,2020,36:106956.
|
[31] |
FRICK D,ACHMUS M. An experimental study on the parameters affecting the cyclic lateral response of monopiles for offshore wind turbines in sand[J]. Soils and Foundations,2020,60(6):1 570–1 587.
|
[39] |
HONG Y,HE B,WANG L Z,et al. Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay:centrifuge tests and numerical modelling[J]. Canadian Geotechnical Journal,2017,54(6):806–824.
|
[38] |
张 勋,黄茂松,胡志平. 砂土中单桩水平循环累积变形特性模型试验[J]. 岩土力学,2019,40(3):933–941.(ZHANG Xun,HUANG Maosong,HU Zhiping. Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand[J]. Rock and Soil Mechanics,2019,40(3):933–941.(in Chinese))
|
[40] |
MCNAMARA S,GARCIA-ROJO R,HERRMANN H J. Microscopic origin of granular ratcheting[J]. Physical Review E,2008,77(3):031304.
|
[5] |
袁炳祥,陈 锐,杨雪强,等. 基于渗水力加荷对侧向受荷桩的试验研究[J]. 岩石力学与工程学报,2016,35(增2):4 295–4 301. (YUAN Bingxiang,CHEN Rui,YANG Xueqiang,et al. Investigation of laterally loaded pile based on the hydraulic gradient model test[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Supp.2):4 295–4 301.(in Chinese))
|
[13] |
曹兆虎,孔纲强,刘汉龙,等. 基于PIV技术的沉桩过程土体位移场模型试验研究[J]. 工程力学,2014,31(8):168–174.(CAO Zhaohu,KONG Gangqiang,LIU Hanlong,et al. Model test on deformation characteristic of pile driving in sand using PIV technique[J]. Engineering Mechanics,2014,31(8):168–174.(in Chinese))
|
[21] |
曾 寅,刘建锋,周志威,等. 盐岩单轴蠕变声发射特征及损伤演化研究[J]. 岩土力学,2019,40(1):207–215.(ZENG Yin,LIU Jianfeng,ZHOU Zhiwei,et al. Creep acoustic emission and damage evolution of salt rock under uniaxial compression[J]. Rock and Soil Mechanics,2019,40(1):207–215.(in Chinese))
|
[29] |
丁自伟,李小菲,唐青豹,等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报,2020,39(9):1 787–1 796. (DING Ziwei,LI Xiaofei,TANG Qingbao,et al. Study on correlation between fractal characteristics of pore distribution and strength of sandstone particles[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(9):1 787–1 796.(in Chinese))
|
[37] |
HAN F,GANJU E,SALGADO R,et al. Effects of interface roughness,particle geometry,and gradation on the sand-steel interface friction angle[J]. Journal of Geotechnical and Geoenvironmental Engineering,2018,144(12):04018096.
|
[19] |
WANG B,XU Z F,LI C,et al. Hydrodynamic characteristics of forced oscillation of heave plate with fractal characteristics based on floating wind turbine platform[J]. Ocean Engineering,2020,212:107621.
|
[27] |
刘振亚,刘建坤,李 旭,等. PIV技术在非饱和冻土冻胀模型试验中的实现与灰度相关性分析[J]. 岩土工程学报,2018,40(2):313–320.(LIU Zhenya,LIU Jiankun,LI Xu,et al. Application of PIV in model tests on frozen unsaturated soils and grayscale correlation analysis[J]. Chinese Journal of Geotechnical Engineering,2018,40(2):313–320.(in Chinese))
|
[35] |
LUO R P,YANG M,LI W C,et al. Numerical study of diameter effect on accumulated deformation of laterally loaded monopiles in sand[J]. European Journal of Environmental and Civil Engineering,2020,24(14):2 440–2 452.
|
[43] |
NARSILIO G A,SANTAMARINA J C. Terminal densities[J]. Geotechnique,2008,58(8):669–674.
|
[42] |
PASTEN C,SHIN H,SANTAMARINA J C. Long-term foundation response to repetitive loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,2014,140(4):0001052.
|