[4] |
SNOW D T. A parallel plate model of fractured permeable media[Ph. D. Thesis][D]. Berkeley:University of California of Berkeley,1965.
|
[5] |
LOMIZE G M. Flow in fractured rocks[R]. Moscow:Gosemergoizdat,1951.
|
[6] |
ZIMMERMAN R W,BODVARSSON G S. Hydraulic conductivity of rock fractures[J]. Transport in Porous Media,1996,23(1):1-30.
|
[1] |
国家发展和改革委员会,国家能源局,国土资源部. 地热能开发利用“十三五”规划[EB/OL]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/ 201706/t20170605_1196776.html,2017.(National Development and Reform Commission,National Energy Administration,Ministry of Land and Resources. “13th Five Year Plan”for geothermal energy development and utilization[EB/OL]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/ 201706/t20170605_1196776.html,2017.(in Chinese))
|
[31] |
TIMM K,KUSUMAATMAJA H,KUZMIN A,et al. The Lattice Boltzmann Method:Principles and practice[M]. Switzerland:Springer,2017:326-328.
|
[7] |
BROSH D J,THOMSON N R. Fluid flow in synthetic rough-walled fractures: Navier-Stokes,Stokes,and local cubic law simulations[J]. Water Resources Research,2003,39(4):1 085-1 100.
|
[8] |
WILSON C R,WITHERSPOON P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research,1974,10(2):328-335.
|
[23] |
YAO C,SHAO Y,YANG J,et al. Effects of fracture density,roughness,and percolation of fracture network on heat-flow coupling in hot rock masses with embedded three-dimensional fracture network[J]. Geothermics,2020,87:101846.
|
[25] |
曾非同,关向雨,黄以政,等. 基于多尺度多物理场的油浸式变压器流动-传热数值研究[J]. 电工技术学报,2020,35(16):3 436-3 444. (ZENG Feitong,GUAN Xiangyu,HUANG Yizheng,et al. Numerical study on flow-heat transfer of oil-immersed transformer based on multiple-scale and multiple-physical fields[J]. Transactions of China Electrotechnical Society,2020,35(16):3 436-3 444.(in Chinese))
|
[29] |
QIAN Y H,D'HUMIERES D,LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters,1992,17(6):479-484.
|
[2] |
郭明晶,成金华,丁 洁,等. 中国地热资源开发利用的技术,经济与环境评价[M]. 武汉:中国地质大学出版社,2016:21-24.(GUO Mingjing,CHENG Jinhua,DING Jie,et al. Technical,economic and environmental evaluation of geothermal resources development and utilization in China[M]. Wuhan:China University of Geosciences Press,2016:21-24.(in Chinese))
|
[9] |
ZIMMERMAN R W,AI-YAARUBI A,PAIN C C,et al. Non-linear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(Supp.1):163-169.
|
[3] |
董芋双,王志国,薛 孟,等. 基于REV的干热岩裂隙渗流传热耦合模拟研究[J]. 工程热物理学报,2023,44(9):2 340-2 346. (DONG Yushuang,WANG Zhiguo,XUE Meng,et al. Coupled simulation of seepage and heat transfer in hot dry rock fractures based on REV[J]. Journal of Engineering Thermophysics,2023,44(9):2 340-2 346.(in Chinese))
|
[11] |
WANG L,CARDENAS M B,SLOTTKE D T,et al. Modification of the local cubic law of fracture flow for weak inertia,tortuosity,and roughness[J]. Water Resources Research,2015,51(4):2 064-2 080.
|
[13] |
朱红光,易 成,谢和平,等. 基于立方定律的岩体裂隙非线性流动几何模型[J]. 煤炭学报,2016,41(4):822-828.(ZHU Hongguan,YI Cheng,XIE Heping,et al. A new geometric model for non-linear flow in rough-walled fractures based on the cubic law[J]. Journal of China Coal Society,2016,41(4):822-828.(in Chinese))
|
[15] |
WANG M,CHEN Y F,MA G W,et al. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures:Lattice Boltzmann simulations[J]. Advances in Water Resources,2016,96:373-388.
|
[16] |
周 新,盛建龙,叶祖洋,等. 岩体粗糙裂隙几何特征对其Forchheimer型渗流特性的影响[J]. 岩土工程学报,2021,43(11):2 075-2 083.(ZHOU Xin,SHENG Jianlong,YE Zuyang,et al. Effects of geometrical feature on Forchheimer-flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering,2021,43(11):2 075-2 083.(in Chinese))
|
[17] |
田 霄,叶祖洋,罗 旺. 岩体裂隙几何结构对其渗流传热特性的影响[J]. 岩土力学,2023,44(12):3 512-3 521.(TIAN Xiao,YE Zuyang,LUO Wang. Effect of rock fracture geometry on its seepage and heat transfer characteristics[J]. Rock and Soil Mechanics,2023,44(12):3 512-3 521.(in Chinese))
|
[19] |
LUO S,ZHAO Z H,PENG H,et al. The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2016,87:29-38.
|
[24] |
CHERKAOUI I,BETTAIBI S,BARKAOUI A,et al. Numerical study of pulsatile thermal magnetohydrodynamic blood flow in an artery with aneurysm using lattice Boltzmann method(LBM)[J]. Communications in Nonlinear Science and Numerical Simulation,2023,123:107281.
|
[28] |
SUN Z X,ZHANG X,XU Y,et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J],Energy,2017,120:20-33.
|
[30] |
GUO Z L,ZHENG C G,SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics,2002,11(4):366-374.
|
[10] |
ZHAO J,BROWN E T. Hydro-thermo-mechanical properties of joints in the Carnmenellis granite[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1992,25(4):279-290.
|
[12] |
肖维民,夏才初,王 伟. 考虑三维形貌特征的粗糙节理渗流空腔模型研究[J]. 岩石力学与工程学报,2011,30(增2):3 786-3 795. (XIAO Weimin,XIA Caichu,WANG Wei. Study of void model for fluid flow through joint by considering 3D topography characteristics[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(Supp.2):3 786-3 795.(in Chinese))
|
[14] |
CHEN Y F,ZHOU J Q,HU S H,et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J].Journal of Hydrology,2015,529:993-1 006.
|
[18] |
高雪峰,张延军,黄奕斌,等.花岗岩粗糙单裂隙对流换热特性的数值模拟[J]. 岩土力学,2020,41(5):1 761-1 769.(GAO Xuefeng,ZHANG Yanjun,HUANG Yibin,et al. Numerical simulation of convective heat transfer characteristics of a rough single fracture in granite[J]. Rock and Soil Mechanics,2020,41(5):1 761-1 769.(in Chinese))
|
[20] |
王亚宁,陆 川,王贵玲. 岩石导热热阻对裂隙对流换热的影响机制[J]. 煤田地质与勘探,2023,51(3):113-122.(WANG Yaning,LU Chuan,WANG Guiling. Influencing mechanism of rock thermal resistance on convective heat transfer of fracture[J]. Coal Geology and Exploration,2023,51(3):113-122.(in Chinese))
|
[21] |
SHEN S,XU J L,ZHOU J J,et al. Flow and heat transfer in microchannels with rough wall surface[J]. Energy Conversion and Management,2006,47(11-12):1 311-1 325.
|
[22] |
姚 池,邵玉龙,杨建华,等. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报,2020,42(6):1 050-1 058.(YAO Chi,SHAO Yulong,YANG Jianhua,et al. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering,2020,42(6):1 050-1 058.(in Chinese))
|
[26] |
KRUGGEL-EMDEN H,KRAVETS B,SURYANARAYANA M K,et al. Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach[J]. Powder Technology,2016,294:236-251.
|
[27] |
ZHAO X,LUO T F,JIN H,A predictive model for self-,Maxwell-Stefan,and Fick diffusion coefficients of binary supercritical water mixtures[J]. Journal of Molecular Liquids,2021,324:114735.
|
[34] |
金 辉,宋星星,郭烈锦. 多孔介质中超临界水渗流压降特性研究[J]. 工程热物理学报,2016,37(1):99-103.(JIN Hui,SONG Xingxing,GUO Liejin. Investigation on pressure drop characteristics of supercritical water seepage in porous media[J]. Journal of Engineering Thermophysics,2016,37(1):99-103.(in Chinese))
|
[35] |
朱大龙. 深层地热水供热回灌井布置方式及取热层热突破机理研究[硕士学位论文][D]. 济南:山东建筑大学,2018.(ZHU Dalong. Research on irrigation wells arrangement and aquifer thermal breakthrough of deep geothermal water heating[M. S. Thesis][D]. Jinan:Shandong Jianzhu University,2018.(in Chinese))
|
[32] |
申林方,王志良,曾 叶,等. 基于粗糙岩体裂隙表面反应的格子Boltzmann渗流-溶解耦合模型[J]. 岩石力学与工程学报,2019,38(8):1 615-1 626.(SHEN Linfang,WANG Zhiliang,ZENG Ye,et al. A coupled seepage and dissolution model of rough rock fractures considering surface reaction based on lattice Boltzmann method[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(8):1 615-1 626.(in Chinese))
|
[33] |
黄 娜,蒋宇静,程远方,等. 基于3D打印技术的复杂三维粗糙裂隙网络渗流特性试验及数值模拟研究[J]. 岩土力学,2021,42(6):1 659-1 668.(HUANG Na,JIANG Yujing,CHENG Fangyuan,et al. Experimental and numerical study of hydraulic properties of three-dimensional rough fracture networks based on 3D printing technology[J]. Rock and Soil Mechanics,2021,42(6):1 659-1 668.(in Chinese))
|