Abstract Solid-fluid interaction between surrounding rock and water body has significant influence on the stability of subsea tunnel. It is necessary to analyze the solid-fluid interaction involved in the construction of subsea tunnels using a model test. According to the feature of solid-fluid coupling model test,a new type of system for solid-fluid coupling model test was presented to simulate the quasi-3D plane stress and plane strain. The model test system was designed as 3.4 m in length,3.0 m in height and 0.8 m in width,and composed of rack body with steel structure,test chamber with toughened glass and loading devices of water pressure. The steel structure rack body consists of 6 steel structure members operated independently and connected by screw bolts with high strength. Toughened glass was used to assure leakproof of the test chamber and easily inspect the seepage and deformation of surrounding rock during subsea tunnel construction process. Furthermore,based on a new type of simulation material,the proposed new type of model test system was applied to the solid-fluid coupling model test for the Kiaochow Bay Subsea Tunnel. The pressure on tunnel wall,the variation of seepage and displacement of surrounding rock mass can be captured using the model test. The research methods and results will instruct similar engineering.
|
Received: 09 October 2012
|
|
|
|