[1] |
许迎年,徐文胜,王元汉,等. 岩爆模拟试验及岩爆机制研究[J]. 岩石力学与工程学报,2002,21(10):1 462-1 466.(XU Yingnian,XU Wensheng,WANG Yuanhan,et al. Simulation testing and mechanism studies on rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(10):1 462-1 466.(in Chinese))
|
[2] |
蔡嗣经,张禄华,周文略. 深井硬岩矿山岩爆灾害预测研究[J]. 中国安全生产科学技术,2005,1(5):17-20.(CAI Sijing,ZHANG Luhua,ZHOU Wenlue. Research on prediction of rock burst in deep hard-rock mines[J]. Journal of Safety Science and Technology,2005,1(5):17-20.(in Chinese))
|
[3] |
王元汉,李卧东,李启光,等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报,1998,17(5):493-501.(WANG Yuanhan,LI Wodong,LI Qiguang,et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(5):493-501.(in Chinese))
|
[4] |
PACK K H,LEE J G,ADISORN O. Seepage force in a drained circular tunnel:an analytical approach[J]. Canadian Geotechnical Journal,2008,45(3):432-436.
|
[5] |
袁继来,林建入,柯曾勇. 岩爆可能性估计的贝叶斯网络方法[C]// Proceedings of 2010 the 3rd International Conference on Computational Intelligence and Industrial Application. Piscataway,NJ:Institute of Electrical and Electronics Engineers,inc,2011:4.(YUAN Jilai,LIN Jianru,KE Cengyong. Bayesian network method for rockburst probability estimation[C]// Proceedings of 2010 the 3rd International Conference on Computational Intelligence and Industrial Application. Piscataway,NJ:Institute of Electrical and Electronics Engineers,inc,2011:4. (in Chinese))
|
[6] |
李绍红,王少阳,朱建东,等. 基于权重融合和云模型的岩爆倾向性预测研究[J]. 岩土工程学报,2018,40(6):1 075-1 083.(LI Shaohong,WANG Shaoyang,ZHU Jiandong,et al. Study on rockburst tendency prediction based on weight fusion and cloud model[J]. Chinese Journal of Geotechnical Engineering,2018,40(6):1 075-1 083.(in Chinese))
|
[7] |
谢学斌,潘长良. 岩爆灾害的灰类白化权函数聚类预测方法[J]. 湖南大学学报:自然科学版,2007,34(8):16-20.(XIE Xuebin,PAN Changliang. Rockburst prediction method based on grey whitenization weight function cluster theory[J]. Journal of Hunan University:Natural Science,2007,34(8):16-20.(in Chinese))
|
[8] |
陈海军,郦能惠,聂德新,等. 岩爆预测的人工神经网络模型[J].岩土工程学报,2002,24(2):229-232.(CHEN Haijun,ZHEN Nenghui,NIE Dexin,et al. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering,2002,24(2):229-232.(in Chinese))
|
[9] |
赵洪波. 岩爆分类的支持向量机方法[J]. 岩土力学,2005,26(4):642-644.(ZHAO Hongbo. Classification of rockburst using support vector machine[J]. Rock and Soil Mechanics,2005,26(4):642-644.(in Chinese))
|
[10] |
DONG L J,LI X B,PENG K. Prediction of rockburst classification using random forest[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):472-477.
|
[11] |
DIAKOULAKI D,MAVROTAS G,PAPAYANNAKIS L. Determining objective weights in multiple criteria problems:The CRITIC method[J]. Computers and Operations Research,1995,22(7):763-770.
|
[12] |
王 瑛,蒋晓东,张 璐. 基于改进的CRITIC法和云模型的科技奖励评价研究[J]. 湖南大学学报:自然科学版,2014,41(4):118-124.(WANG Ying,JIANG Xiaodong,ZHANG Lu. Research on the evaluation of science and technological awards based on improved CRITIC method and cloud model[J]. Journal of Hunan University:Natural Science,2014,41(4):118-124.(in Chinese))
|
[13] |
CHEN T,GUESTRIN C. XGBoost:a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco,USA:[s. n.],2016:85-97.
|
[14] |
闫星宇,顾汉明,肖逸飞,等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探,2019,54(2):447-455. (YAN Xingyu,GU Hanming,XIAO Yifei,et al. Application of XGBoost algorithm in logging interpretation of tight sandstone gas reservoirs[J]. Petroleum Geophysical Prospecting,2019,54(2):447-455.(in Chinese))
|
[15] |
江飞飞,周 辉,刘 畅,等. 地下金属矿山岩爆研究进展及预测与防治[J]. 岩石力学与工程学报,2019,38(5):956-972.(JIANG Feifei,ZHOU Hui,LIU Chang,et al. Research progress,prediction and prevention of rock burst in underground metal mines[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(5):956-972.(in Chinese))
|
[16] |
崔铁军,李莎莎,王来贵,等. 不同采深煤(岩)体岩爆过程模拟分析[J]. 计算力学学报,2017,34(3):336-343.(CUI Tiejun,LI Shasha,WANG Laigui,et al. Simulation analysis of rockburst process of coal(rock) body with different depths[J]. Chinese Journal of Computational Mechanics,2017,34(3):336-343.(in Chinese))
|