[1] |
GOODALL D C,ÅBERG B,BREKKE T L. Fundamentals of gas containment in unlined rock caverns[J]. Rock Mechanics and Rock Engineering,1988,21(4):235-258.
|
[2] |
中华人民共和国国家标准编写组. GB 50455—2020 地下水封石洞油库设计规范[S]. 北京:中国计划出版社,2020.(The National Standards Compilation Group of People?s Republic of China. GB 50455—2020 Standard for design of underground oil storage in rock caverns[S]. Beijing:China Planning Press,2020.(in Chinese))
|
[3] |
刘 忠,张业金,张立德. 地下岩洞油库水封性高效调控策略[J]. 油气储运,2022,41(9):1 036-1 043.(LIU Zhong,ZHANG Yejin,ZHANG Lide. Efficient regulation strategy for water sealing of underground oil storage in rock caverns[J]. Oil and Gas Storage and Transportation,2022,41(9):1 036-1 043.(in Chinese))
|
[4] |
王述红,郝 哲. 岩体微裂隙注浆量预测分析的遗传神经网络方法[J]. 岩土工程学报,2001,23(5):572-575.(WANG Shuhong,HAO Zhe. The genetic algorithm-neural network method to forecast the miniature crack grouting in rock matrix[J]. Chinese Journal of Geotechnical Engineering,2001,23(5):572-575.(in Chinese))
|
[5] |
YANG C P. Estimating cement take and grout efficiency on foundation improvement for Li-Yu-Tan dam[J]. Engineering Geology,2004,75:1-14.
|
[6] |
饶小康,贾宝良,郭 亮,等. 基于大数据平台的灌浆工程单位注入量的预测研究[J]. 水电能源科学,2018,36(4):130-133.(RAO Xiaokang,JIA Baoliang,GUO Liang,et al. Prediction research of per cement in grouting engineering based on big data platform[J]. Water Resources and Power,2018,36(4):130-133.(in Chinese))
|
[7] |
施龙青,黄纪云,高卫富,等. 基于BP神经网络矿井突水点注浆量的预测[J]. 煤炭技术,2019,38(7):101-103.(SHI Longqing,HUANG Jiyun,GAO Weifu,et al. Prediction of grouting amount of mine water inrush point based on BP neural network[J]. Coal Technology,2019,38(7):101-103.(in Chinese))
|
[8] |
李 凯,任炳昱,关 涛,等. 帷幕灌浆量区间预测的Bootstrap-IGWO-SVM模型研究[J]. 水力发电学报,2022,41(10):18-29. (LI Kai,REN Bingyu,GUAN Tao,et al. Curtain grouting cement interval prediction using Bootstrap-IGWO-SVM model[J]. Journal of Hydroelectric Engineering,2022,41(10):18-29.(in Chinese))
|
[9] |
闫福根,李子康,钟 坤. 基于遗传神经网络的灌浆单位注灰量预测方法[J]. 水利水电技术,2023,54(增2):224-230.(YAN Fugen,LI Zikang,ZHONG Kun. Prediction method of grouting unit amount of cement injection based on genetic neural networks[J]. Water Resources and Hydropower Engineering,2023,54(Supp.2):224-230.(in Chinese))
|
[10] |
XIAO F,SHANG J L,ZHAO Z Y. DDA based grouting prediction and linkage between fracture aperture distribution and grouting characteristics[J]. Computers and Geotechnics,2019,112:350-369.
|
[11] |
石祖智,常 峻,吴斌平,等. 基于改进混合核极限学习机的坝基注浆量预测代理模型研究[J]. 水利水电技术,2021,52(9):57-66. (SHI Zuzhi,CHANG Jun,WU Binping,et al. Study on surrogate model of dam foundation grouting volume prediction based on improved multiple kernel extreme learning machine[J]. Water Resources and Hydropower Engineering,2021,52(9):57-66.(in Chinese))
|
[12] |
SOHRABI-BIDAR A,RASTEGAR-NIA A,ZOLFAGHARI A. Estimation of the grout take using empirical relationships(case study:Bakhtiari dam site)[J]. Bulletin of Engineering Geology and the Environment,2016,75:425-438.
|
[13] |
PAL S,KANNAN G,NANDA A. A study on grout estimate for crude oil storage in rock caverns[J]. Journal of Rock Mechanics and Tunnelling Technology,2017,23(2):123-133.
|
[14] |
XIAO F,LIU Q,ZHAO Z. Information and knowledge behind data from underground rock grouting[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,13(6):1 326-1 339.
|
[15] |
中华人民共和国行业标准编写组. SY/T 0610—2008 地下水封洞库岩土工程勘察规范[S]. 北京:石油工业出版社,2008.(The Professional Standards Compilation Group of People?s Republic of China. SY/T 0610—2008 Standard for underground water enclosed cavern investigation of geotechnical engineering[S]. Beijing:Petroleum Industry Press,2008.(in Chinese))
|
[16] |
张奇华,何国富,李玉婕,等. 水封洞库围岩渗透性质与渗水量分析及防渗效果检测标准讨论[J]. 化工与医药工程,2018,39(2):1-5. (ZHANG Qihua,HE Guofu,LI Yujie,et al. Analysis of rock permeability and water seepage quantity for water-sealed cavern and discussion on detection standard of seepage protection[J]. Chemical and Pharmaceutical Engineering,2018,39(2):1-5.(in Chinese))
|
[17] |
BARTON N,QUADROS E. Understanding the need for pre-injection from permeability measurements:what is the connection[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(3):576-597.
|