[1] |
王如路. 上海轨道交通隧道结构安全性分析[J]. 地下工程与隧道,2011,(4):37-43.(WANG Rulu. Structural safety analysis of shanghai rail transit tunnel[J].Underground Engineering and Tunnel,2011,(4):37-43.(in Chinese))
|
[2] |
LEE S Y,SANG H L,DONG I S,et al. Development of an inspection system for cracks in a concrete tunnel lining[J]. Canadian Journal of Civil Engineering,2007,34(8):966-975.
|
[3] |
MONTEROR,VICTORESJ G,MARTINEZS,et al. Past,present andfuture of robotic tunnel inspection[J]. Automation in Construction,2015,59:99-112.
|
[4] |
刘学增,叶 康. 隧道衬砌裂缝的远距离图像测量技术[J]. 同济大学学报:自然科学版,2012,40(6):829-836.(LIU Xuezeng,YE Kang. A long-distance image measuring technique for crack on tunnel lining[J].Journal of Tongji University:Natural Science,2012,40(6):829-836.(in Chinese))
|
[5] |
王平让,黄宏伟,薛亚东. 基于图像局部网格特征的隧道衬砌裂缝自动识别[J]. 岩石力学与工程学报,2012,31(5):991-999.(WANG Pingrang,HUANG Hongwei,XUE Yadong. Automatic recognition of cracks in tunnel lining based on characteristics of local grids in images[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):991-999.(in Chinese))
|
[6] |
王耀东,余祖俊,白 彪,等. 基于图像处理的地铁隧道裂缝识别算法研究[J]. 仪器仪表学报,2014,35(7):1 489-1 496. (WANG Yaodong,YU Zujun,BAI Biao,et al. Research on image processing based subway tunnel crack identification algorithm[J]. Chinese Journal of Scientific Instrument, 2014,35(7):1489-1496.(in Chinese))
|
[7] |
王 睿,漆泰岳,雷 波,等. 隧道衬砌裂缝特征提取方法研究[J]. 岩石力学与工程学报,2015,34(6):1 211-1 217.(WANG Rui,QI Taiyue,LEI Bo,et al. Characteristic extraction of cracks of tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1 211-1 217.(in Chinese))
|
[8] |
AI Q,YUAN Y,BI X. Acquiring sectional profile of metro tunnels using charge-coupled device cameras[J].Structure andInfrastructure Engineering,2016,12(9):1-11.
|
[9] |
HUANG H W,SUN Y,XUE Y D,et al. Inspection equipment study for subway tunnel defects by grey-scale image processing[J]. Advanced Engineering Informatics,2017,32:188-201.
|
[10] |
YAMAGUCHI T,HASHIMOTO S. Practical image measurement of crack width for real concrete structure[J]. Electronics and Communicationsin Japan,2010,92(10):1-12.
|
[1] |
VICTORES J G,MARTÍNEZ S,JARDÓN A,et al. Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration[J]. Automation in Construction,2011,20(5):629-636.
|
[2] |
HOF R D. MIT technology review:10 breakthrough technologies-deep learning[EB/OL]. (2013-4-23)[2017-1-3]. https://www.technologyrevite.com/s/513696/deep-learning/
|
[3] |
LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521:436-444.
|
[4] |
PROTOPAPADAKIS E,DOULAMIS N. Image based approaches for tunnels¢defects recognition via robotic inspectors[C]//Proceedings of the 11th International Symposium on Visual Computing. Las Vegas,Nevada,U.S.:Springer International Publishing,2015:706-716.
|
[5] |
CHA Y J,Choi W,BUYUKOZTURK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering,2017,32(5):361-378.
|
[6] |
GARCIA-GARCIA A,ORTS-ESCOLANO S,OPREA S,et al. A review on deep learning techniques applied to semantic segmentation[J].arXiv preprint,arXiv:1704.06857,2017:1-23.
|
[11] |
李祚林,李晓辉,马灵玲,等. 面向无参考图像的清晰度评价方法研究[J]. 遥感技术与应用,2011,26(2):239-246.(LI Zuolin,LI Xiaohui,MA Lingling,et al. Research of definition assessment based on no-reference digital image quality[J] Remote Sensing Technology and Application,2011,26(2):239-246.(in Chinese))
|
[12] |
王平让,黄宏伟,薛亚东. 隧道衬砌裂缝自动检测性能影响因素模型试验研究[J]. 岩石力学与工程学报,2012,31(8):1705-1714.(WANG Pingrang,HUANG Huangwei,XUE Yadong. Model test study of factors affecting automatic defection performance of cracks in tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1705-1714.(inChinese))
|
[13] |
周 建,段中兴,陈 胜,等. 隧道裂缝自动识别性能影响因素的研究[J]. 公路,2016,(5):216-222.(ZHOU Jian,DUAN Zhongxing,CHEN Sheng,et al. Study of factors affecting automatic detection performance of cracks in tunnel[J]. Highway,2016,(5):216-222.(in Chinese))
|
[14] |
白福忠. 视觉测量技术基础[M].北京:电子工业出版社,2013:37-75.(BAI Fuzhong. Technique basis of vision measurement[M]. Beijing:Publishing House of Electronics Industry,2013:37-75.(in Chinese))
|
[15] |
ZHAO L,NIU L. Study on key techniques of image processing and automatic recognition of tunnel cracks[C]// Proceedings of the 2012 International Conference of Logistics Engineering and Management. Chengdu:ASCE,2012:427-433.
|
[16] |
王平让. 隧道衬砌裂缝机器视觉检测方法及结构安全评估研究[博士学位论文][D]. 上海,同济大学,2013:67-77.(WANGPingrang. Study on machine vision inspection method for cracks and structural safety assessment in tunnel lining[Ph. D. Thesis][D]. Shanghai:Tongji University,2013:67-77.(in Chinese))
|
[17] |
VU C T,PHAN T D,CHANDLER D M. S3:a spectral and spatial measure of local perceived sharpness in natural images[J]. Image Processing IEEE Transactions on Image Processing,2012,21(3):934-945.
|
[18] |
WIERER J J,TSAO J Y,SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J]. Laser andPhotonics Reviews,2013,7(6):963-993.
|
[19] |
KOPPARAPUS K. Lighting design for machine vision application[J]. Image and Vision Computing,2006,24(7):720-726.
|
[20] |
中国土木工程学会. 土木工程应用技术[M].北京:中国城市出版社,2015:18-24.(China Civil Engineering Society. Civil engineering application technology[M]. Beijing:China City Press,2015:18-24.(in Chinese))
|
[21] |
SUN Y,XUE Y D,HUANG H W.Inspection equipment study on subway tunnel defects[C]//Proceedingsof the 2016 World Tunnel Congress.San Francisco,U.S.:International Tunneling and UndergroundSpace Association,2016:1-9.
|
[22] |
中华人民共和国国家标准编写组. GB 50157—2013地铁设计规范[S].北京:中国建筑工业出版社,2013:94.(The National Standards Compilation Group of the People¢s Republic of China. GB 50157—2013 Code for design of metro[S]. Beijing:China Architecture and Building Press,2013:94.(in Chinese))
|