Abstract:The fatigue failure behaviors of intermittent jointed rock masses subjected to repeated stress waves are investigated on the basis of experiments. In order that failure modes in the experiments can be easily observed,all specimens are made of transparent organic glass plate. A tailor-made exploder is used to offer dynamic loads. For static loading,axial stress is provided by a testing machine,and lateral stress is given by a set of jack. Affecting factors which may influence the dynamic fatigue failure property of rock mass,such as joints angles,stuffing characteristics and lateral pressures,are analyzed. Experimental results indicate that damage accumulation of intermittence rock mass is markedly related to the intersection angle between joints and propagation direction of stress waves,and damage distribution will be more nonuniform with the increase of that angle. When the intersection angles are small,the initiation of wing cracks near the tip of joints and damage accumulation are even correspondingly. But for larger intersection angles,fracture and damage are localized on the side of incident waves. For different stuffing cases,results show that joints stuffed with fillings are more favorable for the propagation of stress waves than that of unfilled;but stuffing may decrease the rate of damage accumulation and increase the fatigue life of rock mass. Also,the rate of damage accumulation is controlled by lateral pressure,which decreases along with the increase of lateral pressure. These experimental results show that the fatigue failure of intermittent jointed rock masses are quite complex.