[17] |
WAN Z,YAO Y P,GAO Z W. comparison study of constitutive models for overconsolidated clays[J] Acta Mechanica Solida Sinica,2020,33(4):98-120.
|
[15] |
FINCATO R,TSUTSUMI S. An overstress elasto-viscoplasticity model for high/low cyclic strain rates loading conditions:Part I-Formulation and computational aspects[J]. International Journal of Solids and Structures,2020,207:279-294.
|
[20] |
李潇旋,李 涛,李 舰. 超固结非饱和土的弹塑性双面模型[J]. 水利学报,2020,51(10):1 278-1 288.(LI Xiaoxuan,LI Tao,LI Jian. Elastoplastic two-surface model for overconsolidated unsaturated soils[J]. Journal of Hydraulic Engineering,2020,51(10):1 278- 1 288.(in Chinese))
|
[3] |
王 伟,卢廷浩,周干武. 黏土非线性模型的改进切线模量[J]. 岩土工程学报,2007,29(3):458-462.(WANG Wei,LU Tinghao,ZHOU Ganwu. Improved tangent modulus of nonlinear soil model[J]. Chinese Journal of Geotechnical Engineering,2007,29(3):458-462.(in Chinese))
|
[13] |
ZHAO Y H,LAI Y M,ZHANG J,et al. A bounding surface model for frozen sulfate saline silty clay considering rotation of principal stress axes[J] International Journal of Mechanical Sciences,2020,177(7):1-38.
|
[22] |
KIM D K,DARGUSH G F,SHIN S W,et al. A two surface plasticity model for the simulation of uniaxial ratchetting response[J]. Journal of Mechanical Science and Technology,2012,26(1):145-152.
|
[23] |
WHITE C S. A two surface plasticity model with bounding surface softening[J]. Journal of Engineering Materials and Technology,1996,118(1):37-42.
|
[2] |
章峻豪,陈正汉,赵 娜,等. 非饱和土的新非线性模型及其应用[J]. 岩土力学,2016,37(3):616-624.(ZHANG Junhao,CHEN Zhenghan,ZHAO Na,et al. A new nonlinear model of unsaturated soils and its application[J]. Rock and Soil Mechanics,2016,37(3):616-624.(in Chinese))
|
[4] |
陈 成,周正明. 一个考虑剪胀性和应变软化的土体非线性弹性模型[J]. 岩土工程学报,2013,35(增1):39-43.(CHEN Cheng,ZHOU Zhengming. Nonlinear elastic model for soils incorporating both dilatancy and strain softening[J]. Chinese Journal of Geotechnical Engineering,2013,35(Supp.1):39-43.(in Chinese))
|
[5] |
HARDIN B O,DRNEVICH V P. Shear modulus and damping in soils design equations and curves[J]. Journal of Soil Mechanics and Foundation. ASCE,1992,98(7):603-642.
|
[7] |
臧 濛,孔令伟,曹 勇. 描述循环荷载作用下黏土累积变形的改进模型[J]. 岩土力学,2017,38(2):435-442.(ZANG Meng,KONG Lingwei,CAO Yong. An improved model for cumulative deformations of clay subjected to cyclic loading[J]. Rock and Soil Mechanics,2017,38(2):435-442.(in Chinese))
|
[10] |
HALABIAN A,ASKARINEJAD F,HASHEMOLHOSSEINI S H. New viscoplastic bounding surface subloading model for time-dependent behavior of sands[J]. International Journal of Geomechanics,2021,21(4):1-20.
|
[12] |
ZHOU C,TAI P,YIN J H. A bounding surface model for saturated and unsaturated soil-structure interfaces[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2020,44(18):2 412-2 429.
|
[14] |
CHEN Y N,YANG Z X. A bounding surface model for anisotropically overconsolidated clay incorporating thermodynamics admissible rotational hardening rule[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2020,44(5):668-690.
|
[25] |
LI P,CHONG J,XIN D,et al. A parameter calibration method in two-surface elastoplastic model for sand-structure interface under monotonic shear loading[J]. Computers and Geotechnics,2021,134(3):1-22.
|
[27] |
MADKOUR H. Thermodynamic modeling of the elastoplastic-damage model for concrete[J]. Journal of Engineering Mechanics,2021,147(4):1-14.
|
[30] |
HASHIGUCHI K,CHEN Z P. Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1998,22:197-227.
|
[33] |
YAO Y P,HOU W,ZHOU A N. UH model:three-dimensional unified hardening model for overconsolidated clays[J]. Geotechnique,2009,59(5):451-469.
|
[35] |
YAO Y P,GAO Z W,ZHAO J D,e t al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(7):860-868.
|
[37] |
万 征,孟 达. 基于t准则的各向异性强度准则及变换应力法. 力学学报,2020,52(5):1 519-1 537.(WAN Zheng,MENG Da. Anisotropic strength criterion based on t criterion and the transformation stress method[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(5):1 519-1 537.(in Chinese))
|
[40] |
WAN Z,SONG C C,XUE S T,et al. Elastoplastic constitutive model describing dilatancy behavior of overconsolidated clay[J]. International Journal of Geomechanics,2021,21(3):1-11.
|
[8] |
夏唐代,郑晴晴,陈秀良. 基于累积动应力水平的间歇加载下超孔压预测[J]. 岩土力学,2019,40(4):1 483-1 490.(XIA Tangdai,ZHENG Qingqing,CHEN Xiuliang. Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level[J]. Rock and Soil Mechanics,2019,40(4):1 483-1 490.(in Chinese))
|
[9] |
NIETOLEAL A,KALIAKIN V N. Additional insight into generalized bounding surface model for saturated cohesive soils[J]. International Journal of Geomechanics,2021,21(6):1-15.
|
[18] |
FINCATO R,TSUTSUMI S. A numerical study of the return mapping application for the subloading surface model[J]. Engineering Computations,2018,35(3):1 314-1 343.
|
[19] |
KOICHI H,MASAMI U. Elastoplastic constitutive equation of metals under cyclic loading[J]. International Journal of Engineering Science,2017,111:86-112.
|
[28] |
GENG D J,DAI N,GUO P J,et al. Implicit numerical integration of highly nonlinear plasticity models[J]. Computers and Geotechnics,2021,132(2):1-10.
|
[29] |
YUAN Y X,WHITTLE A J. Formulation of a new elastoviscoplastic model for time-dependent behavior of clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2020,45(6):843-864.
|
[38] |
万 征,宋琛琛,孟 达. 一种非线性强度准则及转换应力法[J]. 力学学报,2019,51(4):1 210-1 222.(WAN Zheng,SONG Chenchen,MENG Da. A nonlinear strength criterion and transformation stress method[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(4):1 210-1 222.(in Chinese))
|
[39] |
万 征,孟 达,宋琛琛. 一种适用于岩土的扩展强度及屈服准则[J]. 力学学报,2019,51(5):1 545-1 556.(WAN Zheng,MENG Da,SONG Chenchen. An extended strength and yield criterion for geomaterials[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(5):1 545-1 556.(in Chinese))
|
[1] |
王丽琴,鹿忠刚,邵生俊. 岩土体复合幂-指数非线性模型[J]. 岩石力学与工程学报,2017,36(5):1 269-1 278.(WANG Liqin,LU Zhenggang,SHAO Shengjun. A composite power exponential nonlinear model of rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1 269-1 278.(in Chinese))
|
[11] |
HAN B W,CAI G Q, ZHOU A N,et al. A bounding surface model for unsaturated soils considering the microscopic pore structure and interparticle bonding effect due to water menisci[J]. Acta Geotechnica,2021,16:1 331-1 354.
|
[21] |
KIM D K,SHIN S W,DARGUSH G F. A two surface plasticity model for uniaxial ratchetting of cyclically stabilized material[J]. Advanced Science Letters,2012,8(6):783-788.
|
[31] |
LADE P V,INEL S. Rotational kinematic hardening model for sand,Part I concept of rotating yield and plastic potential sufaces[J]. Computers and Geotechnics,1997,21(3):183-216.
|
[6] |
郑晴晴,夏唐代,张孟雅,等. 间歇性循环荷载下原状淤泥质软黏土应变预测模型[J]. 浙江大学学报:工学版,2020,54(5):1-10.(ZHENG Qingqing,XIA Tangdai,ZHANG Mengya,et al. Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading[J]. Journal of Zhejiang University:Engineering Science,2020,54(5):1-10.(in Chinese))
|
[16] |
TAKUYA A,MASANORI O,KOICHI H. Complete implicit stress integration algorithm with extended subloading surface model for elastoplastic deformation analysis[J]. International Journal for Numerical Methods in Engineering,2020,121(5):945-966.
|
[24] |
HUANG S H,XU Y G,CHEN G,et al. A numerical shakedown analysis method for strength evaluation coupling with kinematical hardening based on two surface model[J]. Engineering Failure Analysis,2019,103:275-285.
|
[26] |
LIANG J Y,LU D C,DU X L,et al. A 3D non-orthogonal elastoplastic constitutive model for transversely isotropic soil[J]. Acta Geotechnica,2020,22(3):1-18.
|
[36] |
YAO Y P,KONG Y X. Extended UH model:three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics,2011,138(7):853-866.
|
[32] |
LADE P V,INEL S. Rotational kinematic hardening model for sand,Part II characteristic work hardening law and predictions[J]. Computers and Geotechnics,1997,21(3):217-234.
|
[34] |
YAO Y P,HOU W,ZHOU A N. Constitutive model for overconsolidated clays[J]. Science China-Technological Sciences,2008,51(2):179-191.
|