[3] |
赵剑明,刘小生,杨玉生,等. 土工抗震60年研究进展与展望[J]. 中国水利水电科学研究院学报,2018,16(5):417–429.(ZHAO Jianming,LIU Xiaosheng,YANG Yusheng. Review of aseismatic research of earth structure at IWHR in the last 6 decades and its future development [J]. Journal of China Institute of Water Resources and Hydropower Research, 2018,16(5):417–429.(in Chinese))
|
[13] |
HASHIGUCHI K,UENO M. Elastoplastic constitutive laws of granular material,constitutive equations of soils[C]// Proceedings of the 9th Int. Conf. Soil Mech. Found. Engrg.. Tokyo:JSSMFE,1977:73–82.
|
[23] |
薛 龙,王 睿,张建民. 粒状介质三维复杂应力加载离散元数值试验方法[J]. 岩土力学,2018,39(12):4 681–4 690.(XUE Long,WANG Rui,ZHANG Jianmin. DEM numerical test method for granular matter under complex 3D loading[J]. Rock and Soil Mechanics,2018,39(12):4 681–4 690.(in Chinese))
|
[33] |
中华人民共和国行业标准编写组. SL237—1999 土工试验规程[S]. 北京:中国水利水电出版社,1999.(The Professional Standards Compilation Group of People's Republic of China. SL237—1999 Specification of soil test[S]. Beijing:China Water Power Press,1999.(in Chinese))
|
[2] |
张克绪,凌贤长,等. 岩土地震工程及工程振动[M]. 北京:科学出版社,2017:1–60.(ZHANG Kexu,LING Xianzhang. Geotechnical Earthquake Engineering and Engineering Vibration[M]. Beijing:Science Press,2017:1–60.(in Chinese))
|
[4] |
陈国兴,金丹丹,常向东,等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学,2013,34(10):2 737–2 755.(CHEN Guoxing,JIN Dandan,CHANG Xiangdong,et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics,2013,34(10):2 737–2 755.(in Chinese))
|
[6] |
袁晓铭,曹振中,孙 锐,等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报,2009,28(6):1 288–1 296.(YUAN Xiaoming,CAO Zhenzhong,SUN Rui,et al. Preliminary research on liquefaction characteristics of Wenchuan 8.0 Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering. 2009,28(6):1 288–1 296.(in Chinese))
|
[7] |
ORENSE R P,PENDER M J,WOTHERSPOON L M. Analysis of soil liquefaction during the recent Canterbury (New Zealand) earthquakes[J]. Geotechnical Engineering Journal of the Seags and Agssea,2012,43(2):8–17.
|
[12] |
ROSCOE K H,SCHOFIELD A N,THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Geotechnique,1963,13(3):250–255.
|
[14] |
ASAOKA A,NAKANO M,NODA T. Super loading yield surface concept for highly structured soil behavior[J]. Soils and Foundations,2000,40(2):99–110.
|
[22] |
姚仰平,田 雨,刘 林. 三维各向异性砂土UH模型[J]. 工程力学,2018,35(3):49–55.(YAO Yangping,TIAN Yu,LIU Lin. Three-dimensional anisotropic UH model for sands[J]. Engineering Mechanics,2018,35(3):49–55.(in Chinese))
|
[9] |
杨 凡,林向洋,段乙好,等. 2018年印度尼西亚帕鲁MW7.5地震构造背景与区域地震活动[J]. 国际地震动态,2019,(10):30–35.(YANG Fan,LIN Xiangyang,DUAN Yihao,et al. Tectonic context and seismic activities of the 2018MW7.5 earthquake in Palu,Indonesia[J]. Recent Developments in World Seismology,2019,(10):30–35.(in Chinese))
|
[31] |
李永强,景立平,汪 刚,等. DSZ-II型动三轴试验系统研制报告[R]. 哈尔滨:中国地震局工程力学研究所,2018.(LI Yongqiang,JING Liping,WANG Gang,et al. Development report of DSZ-II dynamic triaxial test system[R]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2018.(in Chinese))
|
[17] |
ZHANG F,YE B,NODA T,et al. Explanation of cyclic mobility of soils:approach by stress-induced anisotropy[J]. Soils and Foundations,2007,47(4):635–648.
|
[16] |
SEKIGUCHI H. Rheological characteristics of clays[C]// Proceedings of the 9th Int. Conf. Soil Mech.,Found. Eng.. Tokyo:[s. n.],1977:289–292.
|
[19] |
YE B,YE G L,ZHANG F. Numerical modeling of changes in anisotropy during liquefaction using a generalized constitutive model[J]. Computers and Geotechnics,2012,42:62–72.
|
[24] |
李学丰,黄茂松,钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报,2010,29(9):1 885–1 892.(LI Xuefeng,HUANG Maosong,QIAN Jiangu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(9):1 885–1 892.(in Chinese))
|
[1] |
陈国兴. 岩土地震工程学[M]. 北京:科学出版社,2007:125–130.(CHEN Guoxing. Geotechnical earthquake engineering[M]. Beijing:Science Press,2007:125–130.(in Chinese))
|
[26] |
胡海龙. 玻璃珠砂土再液化行为的试验研究[J]. 中国住宅设施,2017,(9):53–54.(HU Hailong. Experimental study on reliquefaction behavior of glass bead sand[J]. Chinese Residential Facility,2017,(9):53–54.(in Chinese))
|
[11] |
ROSCOE K,SCHOFIELD A,WROTH C. On the generalized stress-strain behaviour of wet clay[J]. Géotechnique,1958,10.
|
[29] |
孙 奇,董全杨,蔡袁强,等. 偏应力比和应力主轴偏转角同时变化下饱和砂土变形特性研究[J]. 岩土力学,2015,36(8):2 261–2 269.(SUN Qi,DONG Quanyang,CAI Yuanqiang,et al. Deformation of fully saturated sand under simultaneous variations of deviatory stress ratio and principal stress rotational angle[J]. Rock and Soil Mechanics,2015,36(8):2 261–2 269.(in Chinese))
|
[5] |
蔡袁强,于玉贞,袁晓铭,等. 土动力学与岩土地震工程[J]. 土木工程学报,2016,49(5):9–30.(CAI Yuanqiang,YU Yuzhen,YUAN Xiaoming,et al. Soil dynamics and geotechnical earthquake engineering[J]. Journal of Civil Engineering,2016,49(5):9–30.(in Chinese))
|
[32] |
中华人民共和国国家标准编写组. GB/T50123—2019 土工试验方法标准[S]. 北京:中国计划出版社,2019.(The National Standards Compilation Group of People's Republic of China. GB/T50123—2019 Standard for geotechnical testing method[S]. Beijing:China Planning Press,2019.(in Chinese))
|
[21] |
刘 洋. 砂土的各向异性强度准则:应力诱发各向异性[J]. 岩土工程学报,2013,35(3):460–468.(LIU Yang. Anisotropic strength criteria of sand:Stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering,2013,35(3):460–468.(in Chinese))
|
[34] |
李永强,景立平,汪 刚,等. DSZ–II型动三轴试验系统操作说明[R]. 哈尔滨:中国地震局工程力学研究所,2018.(Li Yongqiang,Jing Liping,WANG Gang,et al. Operation instructions of DSZ–II dynamic triaxial test system[R]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2018.(in Chinese))
|
[36] |
BAO X H,YE G L,YE B,et al. Seismic performance of SSPQ retaining wall—Centrifuge model tests and numerical evaluation[J]. Soil Dynamics and Earthquake Engineering,2014,6–62:63–82.
|
[8] |
YASUDA S,HARADA K,ISHIKAWA K,et al. Characteristics of liquefaction in Tokyo Bay area by the 2011 Great East Japan Earthquake[J]. Soils and Foundations,2012,52(5):793–810.
|
[15] |
OKA F. A cyclic elasto-viscoplastic constitutive model for clay based on the non-linear hardening rule[C]// Proceedings of the Fourth International Symposium on Numerical Models in Geomechanics. Swansea:[s. n.],1992:105–114.
|
[27] |
王星华,周海林. 固结比对饱和砂土液化的影响研究[J]. 中国铁道科学,2001,22(6):121–126.(WANG Xinghua,ZHOU Hailin. Effect of the consolidation ratio on saturated sand liquidation[J]. China Railway Science,2001,22(6):121–126.(in Chinese))
|
[18] |
ZHANG F,YE B,YE G L. Unified description of sand behavior[J]. Frontiers of Architecture and Civil Engineering in China,2011,5(2):121–150.
|
[20] |
YAO Y,ZHOU A,LU D. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics ,2007,133(10):1 115–1 123.
|
[25] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报,2019,41(2):195–254.(JIANG Mingjing. New paradigm for modern soil mechanics:Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):195–254.(in Chinese))
|
[10] |
张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报,2012,34(1):1–50.(ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering,2012,34(1):1–50.(in Chinese))
|
[28] |
孙 锐,袁晓铭. 非均等固结下饱和砂土孔压增量简化计算公式[J]. 岩土工程学报,2005,27(9):1 021–1 025.(SUN Rui,YUAN Xxiaoming. Simplified incremental formula for estimating pore water pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering,2005,27(9):1 021–1 025.(in Chinese))
|
[30] |
周正龙,陈国兴,吴 琪. 初始剪应力对饱和粉土液化大变形特性的影响[J]. 岩土力学,2017,38(5):1 314–1 320.(ZHOU Zhenglong,CHEN Guoxing,WU Qi. Effect of initial static shear stress on liquefaction and large deformation behaviors of saturated silt[J]. Rock and Soil Mechanics,2017,38(5):1 314–1 320.(in Chinese))
|
[35] |
黄 博,汪清静,凌道盛,等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报,2012,34(7):1 313–1 319.(HUANG Bo,WANG Qingjing,LING Daosheng,et al. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering,2012,34(7):1 313–1 319.(in Chinese))
|