[1] |
宋崇民,渠艳龄,刘 磊,等. 土-结构动力相互作用远场问题数值分析方法综述[J]. 水力发电学报,2019,38(9):1-17.(SONG Chongmin,QU Yanling,LIU Lei,et al. A review of numerical methods for far-field modeling in dynamic soil-structure interaction systems[J]. Journal of Hydroelectric Engineering,2019,38(9):1-17.(in Chinese))
|
[2] |
CHEN X,BIRK C,SONG C. Time-domain analysis of wave propagation in 3D unbounded domains by the scaled boundary finite element method[J]. Soil Dynamics and Earthquake Engineering,2015,75:171-182.
|
[3] |
CHEN X,BIRK C,SONG C. Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method[J]. Computers and Geotechnics,2015,63:1-12.
|
[4] |
阎俊义,金 峰,张楚汉. 基于线性系统理论的FE-SBFE时域耦合方法[J]. 清华大学学报:自然科学版,2003,(11):1 554-1 557. (YAN Junyi,JIN Feng,ZHANG Chuhan. Time domain coupling procedure for FE and SBFE based on linear system theory[J]. Journal of Tsinghua University:Science and Technology,2003,(11): 1 554-1 557.(in Chinese))
|
[5] |
赵 密,杜修力. 基础频响有理近似的稳定性和识别:离散时间的递归算法[J]. 工程力学,2010,27(1):141-147.(ZHAO Mi , DU Xiuli. Stability and identification for rational approximation of foundation frequency response:discrete-time recursive evaluations[J]. Engineering Mechanics,2010,27(1):141-147.(in Chinese))
|
[6] |
赵 密,杜修力. 时间卷积的局部高阶弹簧-阻尼-质量模型[J]. 工程力学,2009,26(5):8-18.(ZHAO Mi,DU Xiuli. High-order model of spring-dashpot-mass model for localizing time convolution[J]. Engineering Mechanics,2009,26(5):8-18.(in Chinese))
|
[7] |
ZHANG G L,ZHAO M,ZHANG J Q,et al Scaled boundary perfectly matched layer(SBPML):A novel 3D time-domain artificial boundary method for wave problem in general-shaped and heterogeneous infinite domain[J]. Computer Methods in Applied Mechanics and Engineering,2023,403:115738.
|
[8] |
LI Z Y,HU Z Q,HONG Z,et al. A novel scaled boundary finite element method for dynamic impedance of an arch dam foundation in a complex layered half-space[J]. Engineering Analysis with Boundary Elements,2022,134:184-198.
|
[9] |
BRISTOL E. On a new measure of interaction for multivariable process control[J]. IEEE Transactions on Automatic Control,1966,11(1):133-134.
|
[10] |
SHINSKEY F G. Process-control systems;application,design,and adjustment[M]. New York:McGraw-Hill,1967:1-20.
|
[11] |
AVOY T M,ARKUN Y,RONG C,et al. A new approach to defining a dynamic relative gain[J]. Control Engineering Practice,2003,11(8):907-914.
|
[12] |
HE M J,CAI W J,WU B F. Control structure selection based on relative interaction decomposition[J]. International Journal of Control,2006,79(10):1 285-1 296.
|
[13] |
VERMA B,PADHY P K. Integral-square-error based normalized relative gain array for the input-output pairing and equivalent transfer function design of MIMO processes[J]. IETE Journal of Research,2023,69(9):5 975-5 985.
|
[14] |
廖振鹏. 工程波动理论导论[M]. 北京:科学出版社,2002:3.(LIAO Zhenpeng. Introduction to wave motion theories in engineering[M]. Beijing:Science Press,2002:3.(in Chinese))
|
[15] |
LI J B,LIU J,LIN G. Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method[J]. Earthquake Engineering and Engineering Vibration,2013,12(4):541-546.
|
[16] |
TASSOULAS J L,KAUSEL E. Elements for the numerical analysis of wave motion in layered strata[J]. International Journal for Numerical Methods in Engineering,1983,19(7):1 005-1 032.
|
[17] |
BIRK C,PREMPRAMOTE S,SONG C. An improved continued‐fraction‐based high‐order transmitting boundary for time‐domain analyses in unbounded domains[J]. International Journal for Numerical Methods in Engineering,2012,89(3):269-298.
|
[18] |
黎明安. 动力学控制基础与应用[M]. 北京:国防工业出版社,2013:1.(LI Mingan. Fundamentals and applications of dynamic control[M]. Beijing:National Defense Industry Press,2013:1.(in Chinese))
|
[19] |
WANG B,ZHU Q,ZANG H,et al. Coupling analysis of ac motors based on relative gain array[C]// IEEE Advanced Information Technology,Electronic and Automation Control Conference. [S. l.]:[s. n.],2018.
|
[20] |
梁威猛. 基于动态相对增益矩阵与插值过程的模型降阶方法研究[硕士学位论文][D]. 上海:上海交通大学,2020.(LIANG Weimeng. Model order reduction based on dynamic relative gain array and interpolation process[M. S. Thesis][D]. Shanghai:Shanghai Jiao Tong University,2020.(in Chinese))
|
[21] |
刘晶波,王振宇,杜修力,等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学,2005,22(6):46-51.(LIU Jingbo,WANG Zhenyu,DU Xiuli,et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering mechanics,2005,22(6):46-51.(in Chinese))
|
[22] |
刘晶波,吕彦东. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报,1998,31(3):55-64.(LIU Jingbo,LV Yandong. A direct method for the analysis of structure-foundation dynamic interaction problems[J]. China Civil Engineering Journal,1998,31(3):55-64.(in Chinese))
|
[23] |
TAJIRIAN F F. Impedance matrices and interpolation techniques for 3-D interaction analysis by the flexible volume method[Ph. D. Thesis][D]. Berkeley:University of California,1981.
|
[24] |
蒋 通,田治见宏. 地基-结构动力相互作用分析方法:薄层法原理及应用[M]. 上海:同济大学出版社,2009.(JIANG Tong,TAJIMI. Foundation-structure dynamic interaction analysis methods:principles and applications of the thin layer method[M]. Shanghai:Tongji Press,2009.(in Chinese))
|
[25] |
陈灯红,杜成斌. 求解无限域动力刚度矩阵的双渐近算法[J]. 工程力学,2016,31(6):30-34.(CHEN Denghong,DU Chengbin. A doubly asymptotic algorithm for solving the dynamic stiffness matrix over unbounded domains[J]. Engineering mechanics,2016,31(6):30-34.(in Chinese))
|
[26] |
LI Y P,LI Z Y,HU Z Q,et al. Coupled FEM/SBFEM investigation on the characteristic analysis of seismic motions of a trapezoidal canyon in a layered half-space[J]. Engineering Analysis Boundary Element,2021,132:248-262.
|
[27] |
LI Z Y,HU Z Q,LIN G,et al. A modified scaled boundary finite element method for dynamic response of a discontinuous layered half-space[J]. Applied Mathematical Modelling,2020,87:77-90.
|
[28] |
SCHAUER M,LEHMANN L. Large scale simulation with scaled boundary finite element method[J]. Proceedings in Applied Mathematics and Mechanics,2009,9(1):103-106.
|