[1] |
齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1-40.(QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1-40.(in Chinese))
|
[2] |
窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152-171.(DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152-171.(in Chinese))
|
[3] |
潘一山,宋义敏,刘 军. 我国煤矿冲击地压的格局、变局和新局[J]. 岩石力学与工程学报,2023,42(9):2 081-2 095.(PAN Yishan,SONG Yimin,LIU Jun. Pattern,change and new situation of coal mine rockburst prevention and control in China[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2 081-2 095.(in Chinese))
|
[4] |
COOK N G W. Seismicity associated with mining[J]. Engineering Geology,1976,10:99-122.
|
[5] |
ORTLEPP W D. Observation of mining-induced faults in an intact rock mass at depth[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37:423-436.
|
[6] |
CAI MF. Prediction and prevention of rockburst in metal mines - a case study of Sanshandao gold mine[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8:204-211.
|
[7] |
谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,DOI:10.13225/j.cnki.jccs.2023.0829.(TAN Yunliang,ZHANG Xiufeng,XIAO Ziyi,et al. Analysis of main control factors of rock burst and disaster mechanism[J]. Journal of China Coal Society,DOI:10.13225/j.cnki.jccs.2023.0829.(in Chinese))
|
[8] |
宫凤强,赵英杰,王云亮,等. 煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J]. 煤炭学报,2022,47(5):1 974-2 010. (GONG Fengqiang,ZHAO Yingjie,WANG Yunliang,et al. Research progress of coal burst liability indices and coal burst“human-coal-environment”three elements mechanism[J]. Journal of China Coal Society,2022,47(5):1 974-2 010.(in Chinese))
|
[9] |
KIDYBI?SKI A. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18(4):295-304.
|
[10] |
SINGH S P. The influence of rock properties on the occurrence and control of rockbursts[J]. Mining Science and Technology,1987,5:11-18.
|
[11] |
中华人民共和国国家标准编写组. GB/T 25217.2—2010冲击地压测定、监测与防治方法[S]. 北京:中国标准出版社,2020.(The National Standards Compilation Group of People?s Republic of China GB/T 25217.2—2010 Methods for test,monitoring and prevention of rock burst[S]. Beijing:Standards Press of China,2020.(in Chinese))
|
[12] |
宫凤强,闫景一,李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报,2018,37(9):1 993-2 014. (GONG Fengqiang,YAN Jingyi,LI Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(9):1 993-2 014.(in Chinese))
|
[13] |
GONG F Q,WANG Y L,WANG Z G,et al. A new criterion of coal burst proneness based on the residual elastic energy index[J]. International Journal of Mining Science and Technology,2021,31(4):553-563.
|
[14] |
ZHANG P L,GONG F Q,LUO S,et al. Damage constitutive model of uniaxially compressed coal material considering energy dissipation[J]. Journal of Materials Research and Technology,2023,27:920-931.
|
[15] |
张绪言,冯国瑞,康立勋,等. 用剩余能量释放速度判定煤岩冲击倾向性[J]. 煤炭学报,2009,34(9):1 165-1 168.(ZHANG Xuyan,FENG Guorui,KANG Lixun,et al. Method to determine burst tendency of coal rock by residual energy emission speed[J]. Journal of China Coal Society,2009,34(9):1 165-1 168.(in Chinese))
|
[16] |
李宝富. 千秋煤矿2号煤层冲击倾向性判别指标研究[J]. 中国安全生产科学技术,2014,10(5):62-67.(LI Baofu. Study on burst tendency differentiation index of #2 coal seam in Qianqiu coal mine [J]. Journal of Safety Science and Technology,2014,10(5):62-67.(in Chinese))
|
[17] |
卢志国,鞠文君,高富强,等. 基于非线性储能与释放特征的煤冲击倾向性指标[J]. 岩石力学与工程学报,2021,40(8):1 559-1 569. (LU Zhiguo,JU Wenjun,GAO Fuqiang,et al. Bursting liability index of coal based on nonlinear storage and release characteristics of elastic energy[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1 559-1 569.(in Chinese))
|
[18] |
王晓卿,康红普,高富强,等. 大尺寸节理煤体单轴压缩力学行为的离散元模拟研究[J]. 煤炭学报,2018,43(11):3 088-3 097. (WANG Xiaoqing,KANG Hongpu,GAO Fuqiang,et al. DEM simulation of mechanical behavior of jointed coal in large scale under uniaxial compression[J]. Journal of China Coal Society,2018,43(11):3 088-3 097.(in Chinese))
|
[19] |
李德建,祁 浩,李春晓,等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究[J]. 矿业科学学报,2020,5(2):150-159.(LI Dejian,QI Hao,LI Chunxiao,et al. Brazilian disc splitting test and numerical simulation on coal samples containing bedding planes[J]. Journal of Mining Science and Technology,2020,5(2):150-159.(in Chinese))
|
[20] |
郝宪杰,袁 亮,王少华,等. 硬煤冲击倾向性的层理效应研究[J]. 煤炭科学技术,2018,46(5):1-7.(HAO Xianjie,YUAN Liang,WANG Shaohua,et al. Study on bedding effect of bump tendency for hard coal[J]. Coal Science and Technology,2018,46(5):1-7.(in Chinese)
|
[21] |
龚 爽,赵毅鑫,王 震,等. 层理对煤岩动态裂纹扩展分形特征的影响[J]. 煤炭学报,2021,46(8):2 574-2 582.(GONG Shuang,ZHAO Yixin,WANG Zhen,et al. Effect of bedding on fractal characteristics of dynamic crack propagation in coal rocks[J]. Journal of China Coal Society,2021,46(8):2 574-2 582.(in Chinese))
|
[22] |
LIU H X,JING H W,YIN Q,et al. Effect of bedding plane on mechanical properties,failure mode,and crack evolution characteristic of bedded rock-like specimen[J]. Theoretical and Applied Fracture Mechanics,2023,123:103681.
|
[23] |
杨圣奇,孙博文,田文岭. 不同层理页岩常规三轴压缩力学特性离散元模拟[J]. 工程科学学报,2022,44(3):430-439.(YANG Shengqi,SUN Bowen,TIAN Wenling. Discrete element simulation of the mechanical properties of shale with different bedding inclinations under conventional triaxial compression[J]. Chinese Journal of Engineering,2022,44(3):430-439.(in Chinese))
|
[24] |
黄 达,黄润秋,张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报,2012,31(2):245-255.(HUANG Da,HUANG Runqiu,ZHANG Yongxing. Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2021,31(2):245-255.(in Chinese))
|
[25] |
LEI XL,KUSUNOSE K,RAO MVMS,et al. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring[J]. Journal of Geophysial Research-Solid Earth,2000,105:6 127-6 139.
|
[26] |
OHNAKA M. Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture:a physical model of earthquake generation processes[J]. Proceedings of the National Academy of Sciences,1996,93:3 795-3 802.
|
[27] |
LI H R,HE M C,QIAO Y F,et al. Mode I fracture properties and energy partitioning of sandstone under coupled static-dynamic loading:Implications for rockburst[J]. Theoretical and Applied Fracture Mechanics,2023,127:104025.
|
[28] |
高富强,原贵阳,娄金福,等. 基于局部矿井刚度理论的冲击地压试验装置研制及应用[J]. 煤炭学报,2023,48(5):1 985-1 995. (GAO Fuqiang,YUAN Guiyang,LOU Jinfu,et al. Development and application of coal burst experiment system based on local mine stiffness theory[J]. Journal of China Coal Society,2023,48(5):1 985-1 995.(in Chinese))
|
[29] |
赵同彬,尹延春,谭云亮,等. 变刚度加载试验系统的研制及其在煤岩破坏力学行为测试中的应用[J]. 岩石力学与工程学报,2022,41(9):1 846-1 857.(ZHAO Tongbin,YIN Yanchun,TAN Yunliang,et al. Development of a rock testing system with changeable stiffness and its application in the study on the rock failure mechanical behavior[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1 846-1 857.(in Chinese))
|
[30] |
HOU PY,CAI M. Post-peak stress-strain curves of brittle hard rocks under different loading environment system stiffness[J]. Rock Mechanics and Rock Engineering,2022,55:3 837-3 857.
|