|
|
|
| Multiscale statistical damage constitutive model of reef limestone based on digital cores |
| LI Wenjie1, QU Dengxing1, 2, LI Xinping1, 2, WANG Liangjun3, ZHU Yingwei1, 2, LUO Yi1, 2, LIU Tingting1, 2, MENG Fei1, 2 |
| (1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China; 2. Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, Hainan 572025, China; 3. China Gezhouba Group Co., Ltd., Wuhan, Hubei 430033, China) |
|
|
|
|
Abstract To characterize the influence of micro- and meso-structures on the macroscopic mechanical properties of reef limestone, this study investigates two typical types of reef limestone. Through multi-scale physical and mechanical experiments, the intrinsic correlations among microscopic minerals, mesostructural characteristics, and macroscopic mechanical properties are systematically elucidated. Utilizing digital rock technology and mesoscopic homogenization methods, a multi-scale statistical damage constitutive model for reef limestone is established. The experimental results reveal significant variability in the macroscopic mechanical properties of reef limestone. The two types of reef limestone exhibit distinct differences in pore structure at the mesoscopic scale, while nanoindentation and X-ray diffraction (XRD) analyses indicate that their microscopic mineral compositions and matrix mechanical properties are highly similar. Consequently, the pore structure is identified as the key factor influencing the macroscopic mechanical response of reef limestone. By employing statistical damage theory and digital rock technology, the reef limestone is conceptualized as an assemblage of microelements forming a two-phase pore-matrix system. Assuming that microelement failure adheres to the Drucker-Prager strength criterion, the equivalent strength of the microelements is derived using the established microelement equivalent strength model. The strength probability distribution function of the microelement assemblage is then fitted to construct the multi-scale statistical damage constitutive model for reef limestone. Validation results demonstrate that the proposed model effectively captures the entire deformation process of reef limestone, from linear elasticity to peak strength, enabling cross-scale characterization from microscopic heterogeneity to macroscopic mechanical behavior. Although the model has certain limitations in representing the deformation mechanisms during the compaction stage, it provides a theoretical foundation for understanding the mechanical behavior of porous rocks.
|
|
|
|
|
|
[1] 孟庆山,范 超,曾卫星,等. 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学,2019,40(1):183–190.(MENG Qingshan,FAN Chao,ZENG Weixing,et al. Tests on dynamic properties of coral-reef limestone in South China Sea[J]. Rock and Soil Mechanics,2019,40(1):183–190.(in Chinese))
[2] 任辉启,黄 魁,朱大明,等. 南沙群岛珊瑚礁工程地质研究综述[J]. 防护工程,2015,37(1):63–78.(REN Huiqi,HUANG Kui,ZHU Daming,et al. Review of engineering geology of coral reef in Nansha Islands[J]. Protective Engineering,2015,37(1):63–78.(in Chinese))
[3] 段志刚,杨 佳,马 彬,等. 中国南沙某岛礁深层礁灰岩物理力学特性[J]. 工程地质学报,2020,28(增):70–76.(DUAN Zhigang,YANG Jia,MA Bin,et al. Physical and mechanical properties of deep reef limestone in Nansha,China[J]. Journal of Engineering Geology,2020,28(Supp.):70–76.(in Chinese))
[4] 刘海峰,朱长歧,孟庆山,等. 礁灰岩嵌岩桩的模型试验[J]. 岩土力学,2018,39(5):1 581–1 588.(LIU Haifeng,ZHU Changqi,MENG Qingshan,et al. Model test on rock-socketed pile in reef limestone[J]. Rock and Soil Mechanics,2018,39(5):1 581–1 588.(in Chinese))
[5] 王新志,汪 稔,孟庆山,等. 南沙群岛珊瑚礁礁灰岩力学特性研究[J]. 岩石力学与工程学报,2008,27(11):2 221–2 226.(WANG Xinzhi,WANG Ren,MENG Qingshan,et al. Research on characteristics of coral reef calcareous rock in Nansha islands[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2 221–2 226.(in Chinese))
[6] 金昱昕,陈天然,孟庆山,等. 单轴抗压强度揭示南海珊瑚骨骼结构的差异[J]. 热带海洋学报,2017,36(2):33–39.(JIN Yuxin,CHEN Tianran,MENG Qingshan,et al. Difference of coral skeletal structure revealed by compressive strength measurements[J]. Journal of Tropical Oceanography,2017,36(2):33–39.(in Chinese))
[7] 马林建,刘华超,张 巍,等. 不同埋深珊瑚礁灰岩物理力学特性宏细观研究[J]. 高校地质学报,2023,29(3):471–478.(MA Linjian,LIU Huachao,ZHANG Wei,et al. Macroscopic and mesoscopic investigation on the physical and mechanical characteristics of coral limestone at different depths[J]. Geological Journal of China Universities,2023,29(3):471–478.(in Chinese))
[8] 范 超. 珊瑚礁灰岩的动态力学性能试验研究[硕士学位论文][D]. 南宁:广西大学,2018.(FAN Chao. Experimental study on dynamic mechanical properties of coral reef limestone[M. S. Thesis][D]. Nanjing:Guangxi University,2018.(in Chinese))
[9] 郑 坤,孟庆山,汪 稔,等. 珊瑚礁灰岩工程地质特性研究新进展[J]. 海洋地质与第四纪地质,2020,40(1):42–49.(ZHENG Kun,MENG Qingshan,WANG Ren,et al. Advances in study of engineering geological characteristics of coral reef limestone[J]. Marine Geology and Quaternary Geology,2020,40(1):42–49.(in Chinese))
[10] SILIN D,PATZEK T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A:Statistical Mechanics and its Applications,2006,371(2):336–360.
[11] BALDWIN C A,SEDERMAN A J,MANTLE M D,et al. Determination and characterization of the structure of a pore space from 3D Volume Images[J]. Journal of Colloid and Interface Science,1996,181(1):79–92.
[12] 张 标,雷学文,魏厚振,等. 基于CT扫描试验的珊瑚骨架灰岩孔隙结构特征研究[J]. 工程地质学报,2021,29(6):1 692–1 699. (ZHANG Biao,LEI Xuewen,WEI Houzhen,et al. Study on pore structure characteristics of coral skeleton limestone based on CT scans[J]. Journal of Engineering Geology,2021,29(6):1 692–1 699. (in Chinese))
[13] LIU H F,MA C H,ZHU C Q. X-ray micro CT based characterization of pore-throat network for marine carbonates from south China sea[J]. Applied Sciences,2022,12(5):2 611.
[14] 徐 君,黄 昕,王君朋,等. 礁灰岩孔隙结构表征及关键孔隙节点识别研究[J]. 岩石力学与工程学报,2023,42(增1):3 355–3 366.(XU Jun,HUANG Xin,WANG Junpeng,et al. Characterization of coral reef limestone's pore structure and identification of key pore nodes[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Supp.1):3 355–3 366.(in Chinese))
[15] ZHANG M C,LUO Y,GONG H L,et al. Fine characterization of pore structures in coral reef limestones based on three-dimensional geometrical reconstruction[J]. Marine Georesources and Geotechnology,2024,42(6):721–735.
[16] 王路静. 基于统计损伤模型的混凝土梁裂纹扩展数值模拟[硕士学位论文][D]. 郑州:华北水利水电大学,2020.(WANG Lujing. Numerical simulation of crack propagation in concrete beams based on statistical damage model[M. S. Thesis][D]. Zhengzhou:North China University of Water Resources and Electric Power,2020.(in Chinese))
[17] KRAJCINOVIC D. Creep of structures—a continuous damage mechanics approach[J]. Journal of Structural Mechanics,1983,11(1):1–11.
[18] 杨友卿. 岩石强度的损伤力学分析[J]. 岩石力学与工程学报,1999,18(1):24–28.(YANG Youqing. Damage mechanics analysis of rock strength[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(1):24–28.(in Chinese))
[19] 曹文贵,方祖烈,唐学军. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报,1998,27(6):628–633.(CAO Wengui,FANG Zulie,TANG Xuejun. Study on statistical constitutive model of rock damage softening[J]. Chinese Journal of Rock Mechanics and Engineering,1998,27(6):628–633.(in Chinese))
[20] 魏 超,赵 程,赵春风,等. 考虑温度作用的岩石统计损伤本构模型及验证[J]. 中南大学学报:自然科学版,2024,55(3):1 056–1 067.(WEI Chao,ZHAO Cheng,ZHAO Chunfeng,et al. Statistical damage constitutive model for rocks considering temperature effects and its validation[J]. Journal of Central South University:Science and Technology,2024,55(3):1 056–1 067.(in Chinese))
[21] 马高强. 基于损伤演化的半均质砂岩本构模型研究[J]. 长江科学院院报,2018,35(6):86–91.(MA Gaoqiang. Research on constitutive model of semi-homogeneous sandstone based on damage evolution[J]. Journal of Yangtze River Scientific Research Institute,2018,35(6):86–91.(in Chinese))
[22] 李小峰,王军保. 基于改进Harris分布的岩石损伤统计本构模型研究[J]. 地下空间与工程学报,2012,8(4):767–771.(LI Xiaofeng,WANG Junbao. Statistical damage constitutive model for rock based on improved Harris distribution[J]. Chinese Journal of Underground Space and Engineering,2012,8(4):767–771.(in Chinese))
[23] 王 辉,王 伟,朱鹏辉,等. 考虑干湿循环的大理岩统计损伤本构模型[J]. 河南科学,2020,38(6):909–915.(WANG Hui,WANG Wei,ZHU Penghui,et al. Statistical damage constitutive model of marble considering dry-wet cycle[J]. Henan Science,2020,38(6):909–915.(in Chinese))
[24] 杜佳慧,李文璞,冯国瑞,等. 基于双剪统一强度准则砂岩真三轴卸荷损伤本构模型研究[J]. 岩石力学与工程学报,2024,43(5):1 230–1 240.(DU Jiahui,LI Wenpu,FENG Guorui,et al. A true triaxial unloading damage intrinsic model for sandstone based on the double shear unified strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(5):1 230–1 240.(in Chinese))
[25] WANG X L,ZHANG J H,QIAN L,et al. Nonlinear statistical damage constitutive model of granite based on the energy dissipation ratio[J]. Scientific Reports,2022,12(1):1–16.
[26] 余克服,王 瑞,李银强,等. 千米深钻记录之西沙群岛珊瑚礁形成演化与环境变迁[M]. 北京:科学出版社,2024:149–152.(YU Kefu,WANG Rui,LI Yinqiang,at al. Coral reef formation,evolution and environmental changes in the Xisha lslands:Records from a kilometre-Long Borehole[M] Beijing:Science Press,2024:149–152.(in Chinese))
[27] 王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2008.(WANG Xinzhi. Study on engineering geological properties of coral reefs and feasibility of large project construction on Nansha lslands[Ph. D. Thesis][D]. Wuhan:Institute of Rock and Soil Mechnics,Chinese Academy of Sciences,2008.(in Chinese))
[28] 李 明. 南海广布种澄黄滨珊瑚和低纬度优势种疣状杯形珊瑚的群体遗传学研究[博士学位论文][D]. 南宁:广西大学,2022.(LI Ming. Population genetics research of widespread coral porites lutea and low latitude dominant coral pocillopora verrucosa in the south china sea[Ph. D. Thesis][D]. Nanjing:Guangxi University,2022.(in Chinese))
[29] JAHAN T N,SAHADAT H M,MOHAMMED B N,et al. Green synthesis of Ag2O & facile synthesis of ZnO and characterization using FTIR,bandgap energy & XRD (Scherrer equation,Williamson-Hall,size-train plot,Monshi-Scherrer model)[J]. Results in Chemistry,2024,7:101313.
[30] PHARR G M,OLIVER W C. Measurement of thin film mechanical properties using nanoindentation [J]. MRS Bulletin,1992,17(7):28–33.
[31] ULIAN G,VALDRÈ G. Structural and elastic behaviour of aragonite at high-pressure:A contribution from first-principle simulations[J]. Computational Materials Science,2022,212:111600.
[32] PENNACCHIONI L,SPEZIALE S,WINKLER B. Elasticity of natural aragonite samples by Brillouin spectroscopy[J]. Physics and chemistry of Minerals,2023,50(3):22.
[33] CHRISTENSEN R M,LO K H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids,1979,27(4):315–330.
[34] 金 浏. 细观混凝土分析模型与方法研究[博士学位论文][D]. 北京:北京工业大学,2014.(JIN Liu. Study on meso-scopic model and analysis method of concrete[Ph. D. Thesis][D]. Beijing:Beijing University of Technology,2014.(in Chinese))
[35] LI X P,ZHU Y W,WANG L J,et al. Study on the micro-mechanical behavior and pore structure evolution mechanism of coral reef limestone based on digital rock core[J]. Computers and Geotechnics,2025,177:106845.
[36] 曹文贵,张 超,贺 敏,等. 考虑空隙压密阶段特征的岩石应变软化统计损伤模拟方法[J]. 岩土工程学报,2016,38(10):1 754–1 761.(CAO Wengui,ZHANG Chao,HE Min,et al. Statistical damage simulation method of strain softening deformation process for rocks considering characteristics of void compaction stage[J]. Chinese Journal of Geotechnical Engineering,2016,38(10):1 754–1 761.(in Chinese))
[37] 张 明,王 菲,杨 强. 基于三轴压缩试验的岩石统计损伤本构模型[J]. 岩土工程学报,2013,35(11):1 965–1 971.(ZHANG Ming,WANG Fei,YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering,2013,35(11):1 965–1 971.(in Chinese))
|
|
|
|