|
Abstract Great changes in pore structure and quantity of coal may occur as the pyrolysis temperature rises. To study the change laws,a mercury intrusion method was adopted to measure and analyze the pore structure parameters of the solid products of flame coal pyrolysis,which were generated in vacuum system with temperatures from 300 ℃ to 600 ℃ and in high temperature steam state at 600 ℃;the pore fractal dimensions were calculated under different temperatures;and pore properties of solid products under two different pyrolysis ways were compared. The results indicate that:(1) Under conventional pyrolysis,the total pore volume and porosity of Heidaigou coal decreased from 300 ℃ to 400 ℃ and increased from 400 ℃ to 600 ℃;the increasing rate is the greatest from 500 ℃ to 600 ℃;the specific surface area increased progressively from 300 ℃ to 600 ℃. But for Zichang coal,the total pore volume and porosity increased from 300 ℃ to 400 ℃ and then decreased from 400 ℃ to 500 ℃ and increased from 500 ℃ to 600 ℃;the increasing rate is the greatest from 300 ℃ to 400 ℃;the specific surface area decreased progressively from 300℃ to 600 ℃. (2) Under conventional pyrolysis,large pores were the major parts of pore volume,micropore and transition pore were the major parts of the specific surface area. (3) Under high temperature steam pyrolysis,the large pores were the major parts of pore volume;the proportion of large pores of Zichang coal was 99.91%;micropores and transition pores were the major parts of the specific surface area of Heidaigou coal;the large pores were the major parts of specific surface area of Zichang coal. (4) Compared with conventional pyrolysis,the permeability of solid products of high temperature steam pyrolysis was greater;and compared with inert gas injection,it is the best method in the coal situ-pyrolysis application. These results can provide a scientific basis and theoretical guidance for the issue that coal pore structure changes with temperature during coal situ-pyrolysis.
|
|
Received: 19 March 2010
|
|
|
|