[1] |
STEIN R S. The role of stress transfer in earthquake occurrence[J]. Nature,1999,402(6762):605-609.
|
[2] |
DELOREY A A,VAN DER ELST N J,JOHNSON P A. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault[J]. Earth and Planetary Science Letters,2017,460:164-170.
|
[3] |
RAY S K,KHAN A M,MOHALIK N K,et al. Review of preventive and constructive measures for coal mine explosions:An Indian perspective[J]. International Journal of Mining Science and Technology,2022,32(3):471-485.
|
[4] |
NOEL C,PASSELEGUE F X,GIORGETTI C,et al. Fault reactivation during fluid pressure oscillations:transition from stable to unstable slip[J]. Journal of Geophysical Research-Solid Earth,2019,124(11):10 940-10 953.
|
[5] |
VIDALE J E,LI Y G. Damage to the shallow landers fault from the nearby Hector Mine earthquake[J]. Nature,2003,421(6922):524-526.
|
[6] |
ELLSWORTH W L. Injection-induced earthquakes[J]. Science,2013,341(6142):1225942.
|
[7] |
EVANS K F,ZAPPONE A,KRAFT T,et al. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe[J]. Geothermics,2012,41(1):30-54.
|
[8] |
刘贺娟,童荣琛,侯正猛,等. 地下流体注采诱发地震综述及对深部高温岩体地热开发的影响[J]. 工程科学与技术,2022,54(1):83-96.(LIU Hejuan,TONG Rongchen,HOU Zhengmeng,et al. Review of induced seismicity caused by subsurface fluid injection and production and impacts onthe geothermal energy production from deep high temperature rock[J]. Advanced Engineering Sciences,2022,54(1):83-96.(in Chinese))
|
[9] |
BRODSKY E E,LAJOIE L J. Anthropogenic seismicity rates and operational parameters at the salton sea geothermal field[J]. Science,2013,341(6145):543-546.
|
[10] |
TAO K,DANG W,LI Y. Frictional sliding of infilled planar granite fracture under oscillating normal stress[J]. International Journal of Mining Science and Technology,2023,33(6):687-701.
|
[11] |
TAO K,DANG W,LIAO X,et al. Experimental study on the slip evolution of planar fractures subjected to cyclic normal stress[J]. International Journal of Coal Science and Technology,2023,10(1):67.
|
[12] |
HE L,SUN X,YANG H,et al. Upper crustal structure and earthquake mechanism in the Xinfengjiang water reservoir,Guangdong,China[J]. Journal of Geophysical Research-Solid Earth,2018,123(5):3 799-3 813.
|
[13] |
马文涛,蔺 永,苑京立,等. 水库诱发地震的震例比较与分析[J]. 地震地质,2013,35(4):914-929.(MA Wentao,LIN Yong,YUAN Jingli,et al. Comparison and analysis on the basic features of reservoir-induced seismicity[J]. Seismology and Geology,2013,35(4):914-929.(in Chinese))
|
[14] |
LISA T,王 亚,李景富,等. 广东河源断裂带地热成因及与构造关系初探[J]. 地质力学学报,2019,25(3):400-411.(LISA T,WANG Ya,LI Jingfu,et al. A preliminary study on the mechanics and tectonic relationship to the geothermal field of the Heyuan fault zone in guangdong province[J]. Journal of Geomechanics,2019,25(3):400-411.(in Chinese))
|
[15] |
顾成权. 河源断裂带对京九高速铁路工程安全影响研究[J]. 铁道工程学报,2016,33(6):44-48.(GU Chengquan. Research on the influence of heyuan fault zone on the safety of Beijing—Jiulong high speed railway construction[J]. Journal of Railway Engineering Society,2016,33(6):44-48.(in Chinese))
|
[16] |
刘大任. 邵武—河源断裂带活动性及分段评价[J]. 地质力学学报,1997,(2):56-62.(LIU Daren. Segmentation of the Shaowu—Heyuan fault zone and their activity assessment[J]. Journal of Geomechanics,1997,(2):56-62.(in Chinese))
|
[17] |
HEKI K. Snow load and seasonal variation of earthquake occurrence in Japan[J]. Earth and Planetary Science Letters,2003,207(1/4):159-164.
|
[18] |
PERFETTINI H,SCHMITTBUHL J,COCHARD A. Shear and normal load perturbations on a two-dimensional continuous fault:2. Dynamic triggering[J]. Journal of Geophysical Research-Solid Earth,2003,108(B9):2 409.
|
[19] |
BETTINELLI P,AVOUAC J,FLOUZAT M,et al. Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology[J]. Earth and Planetary Science Letters,2008,266(3/4):332-344.
|
[20] |
YOSHIDA S. Numerical simulations of earthquake triggering by dynamic and static stress changes based on a revised friction law[J]. Journal of Geophysical Research-Solid Earth,2018,123(5):4 109-4 122.
|
[21] |
YOSHIDA S,MAEDA T,KATO N. Earthquake triggering model based on normal - stress-dependent Nagata law:application to the 2016 Mie offshore earthquake[J]. Earth Planets and Space,2020,72(1):141.
|
[22] |
VAN DER ELST N J,BRODSKY E E,LAY T. Remote triggering not evident near epicenters of impending great earthquakes[J]. Bulletin of the Seismological Society of America,2013,103(2B):1 522-1 540.
|
[23] |
VAN DER ELST N J,SAVAGE H M. Frequency dependence of delayed and instantaneous triggering on laboratory and simulated faults governed by rate-state friction[J]. Journal of Geophysical Research-Solid Earth,2015,120(5):3 406-3 429.
|
[24] |
SHENG M,LI P,ZHUANG X,et al. Influence of cyclic normal stress on shear friction of EGS granite fractures[J]. Engineering Fracture Mechanics,2020,238:107268.
|
[25] |
LOCKNER D A,BEELER N M. Premonitory slip and tidal triggering of earthquakes[J]. Journal of Geophysical Research-Solid Earth,1999,104(B9):20 133-20 151.
|
[26] |
BEELER N M,LOCKNER D A. Why earthquakes correlate weakly with the solid earth tides:effects of periodic stress on the rate and probability of earthquake occurrence[J]. Journal of Geophysical Research-Solid Earth,2003,108(B8):2 391.
|
[27] |
黄元敏,马胜利,缪阿丽,等. 正应力扰动对断层滑动失稳影响的实验研究[J]. 地球物理学报,2016,59(3):931-940.(HUANG Yuanmin,MA Shengli,MIAO Ali,et al. Effects of normal stress perturbation on frictional instability:An experimental study[J]. Chinese Journal of Geophysics,2016,59(3):931-940.(in Chinese))
|
[28] |
LINKER M F,DIETERICH J H. Effects of variable normal stress on rock friction;observations and constitutive equations[J]. Journal of Geophysical Research,1992,97(B4):4 923-4 940.
|
[29] |
HONG T C,MARONE C. Effects of normal stress perturbations on the frictional properties of simulated faults[J]. Geochemistry Geophysics Geosystems,2005,6(3):Q03012.
|
[30] |
PRAKASH V. Frictional response of sliding interfaces subjected to time varying normal pressures[J]. Journal of Tribology,1998,120(1):97-102.
|
[31] |
JOHNSON P A,CARPENTER B,KNUTH M,et al. Nonlinear dynamical triggering of slow slip on simulated earthquake faults with implications to earth[J]. Journal of Geophysical Research,2012,117(B4):B04310.
|
[32] |
CHEN J Y,NIEMEIJER A R,SPIERS C J. Rapid normal stress oscillations cause weakening and anelastic dilation in gouge-bearing faults[J]. Geophysical Research Letters,2024,51(15):e2024GL109755.
|
[33] |
YU B W,CHEN J,SPIERS C J,et al. Frictional properties of simulated fault gouges subject to normal stress oscillation and implications for induced seismicity[J]. Journal of Geophysical Research-Solid Earth,2024,129(9):e2024JB029521.
|
[34] |
邵 康,刘金锋,谢 彬,等. 正应力和含水率对花岗岩断层泥的摩擦特性和声发射特征的影响[J]. 地震地质,2025,待刊.(SHAO Kang,LIU Jinfeng,XIE Bin,et al. Frictional properties associated with acoustic emission characteristics of simulated granite fault gouges:effects of normal stress and water content[J]. Seismology and Geology,2025,to be pressed.(in Chinese))
|
[35] |
MARONE C. Laboratory-derived friction laws and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences,1998,26(1):643-696.
|
[36] |
ZANG A,OYE V,JOUSSET P,et al. Analysis of induced seismicity in geothermal reservoirs-An overview[J]. Geothermics,2014,52:6-21.
|
[37] |
GUPTA H K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna,India[J]. Earth-Science Reviews,2002,58(3/4):279-310.
|
[38] |
LOGAN J M,DENGO C A,HIGGS N G,et al. Chapter 2 fabrics of experimental fault zones:their development and relationship to mechanical behavior[M]. London:Academic Press,1992:33-67.
|
[39] |
BOETTCHER M S,MARONE C. Effects of normal stress variation on the strength and stability of creeping faults[J]. Journal of Geophysical Research-Solid Earth,2004,109(B3):B03406.
|
[40] |
CHEN X,MADDEN A S E,RECHES Z. Friction evolution of granitic faults:heating controlled transition from powder lubrication to frictional melt[J]. Journal of Geophysical Research-Solid Earth,2017,122(11):9 275-9 289.
|
[41] |
雷蕙如. 水热条件下花岗岩脆塑性转化带的摩擦实验研究[博士学位论文][D]. 北京:中国地震局地质研究所,2022.(LEI Huiru. Friction properties of brittle-ductile transition with a granite gouge at hydrothermal conditions[Ph. D. Thesis][D]. Beijing:Institute of Geology,China Earthquake Administration,2022.(in Chinese))
|
[42] |
马泽强,刘金锋,范财源. 水岩反应蚀变矿物对模拟花岗岩断层泥摩擦因数与速度依赖性的影响[J]. 中山大学学报:自然科学版(中英文),2024,63(5):13-27.(MA Zeqiang,LIU Jinfeng,FAN Caiyuan. Effect of water-rock reaction altered minerals on friction coefficient and velocity dependence of simulated granite fault gouges[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(5):13-27.(in Chinese))
|
[43] |
WANG W,SCHOLZ C H. Micromechanics of the velocity and normal stress dependence of rock friction[J]. Pure and Applied Geophysics,1994,143(1/3):303-315.
|
[44] |
CURRAN J H,CARROLL M M. Shear stress enhancement of void compaction[J]. Journal of Geophysical Research,1979,84(B3):1 105-1 112.
|
[45] |
WONG T,BAUD P. The brittle-ductile transition in porous rock:A review[J]. Journal of Structural Geology,2012,44:25-53.
|
[46] |
叶秀薇,吕作勇,王 亮,等. 粤东连平—河源—汕尾地震测深剖面地壳速度结构及其意义[J]. 地球物理学报,2024,67(6):2 304-2 321.(YE Yiuwei,LÜ Zuoyong,WANG Liang,et al. Fine crustal velocity structure revealed by a deep seismic sounding profile of Lianping-Heyuan-Shanwei in the Eastern Guangdong[J]. Chinese Journal of Geophysics,2024,67(6):2 304-2 321.(in Chinese))
|
[47] |
沈崇刚,陈厚群,张楚汉,等. 新丰江水库地震及其对大坝的影响[J]. 中国科学,1974,(2):184-205.(SHEN Chonggang,CHEN Houqun,ZHANG Chuhan,et al. Xinfengjiang reservoir earthquake and its influence on dam[J]. Scientia Sinica,1974,(2):184-205.(in Chinese))
|
[48] |
景 锋,盛 谦,张勇慧,等. 中国大陆浅层地壳实测地应力分布规律研究[J]. 岩石力学与工程学报,2007,26(10):2 056- 2 062.(JING Feng,SHENG Qian,ZHANG Yonghui,et al. Research on distribution rule of shallow crustal geostress in China Mainland[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(10): 2 056-2 062.(in Chinese))
|
[49] |
MAJER E L,BARIA R,STARK M,et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics,2007,36(3):185-222.
|
[50] |
BRUNE J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research(1896~1977),1970,75(26):4 997-5 009.
|
[51] |
VOUILLAMOZ N,WUST-BLOCH G H,ABEDNEGO M,et al. Optimizing event detection and location in low-seismicity zones:case study from Western Switzerland[J]. Bulletin of the Seismological Society of America,2016,106(5):2 023-2 036.
|
[52] |
ZOBACK M D,GORELICK S M. Earthquake triggering and large-scale geologic storage of carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(26):10 164-10 168.
|
[53] |
STEIN S,WYSESSION M. An Introduction to seismology,earthquakes,and earth structure[M]. New Jersey:Wiley-Blackwell,2013:215-239.
|
[54] |
STESKY R M. Mechanisms of high temperature frictional sliding in Westerly granite[J]. Canadian Journal of Earth Sciences,1978,15(3):361-375.
|