[1] |
李根生,武晓光,宋先知,等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报,2022,7(3):343-364.(LI Gensheng,WU Xiaoguang,SONG Xianzhi,et al. Current status and challenges of exploitation technologies for hot dry rock geothermal resources[J]. Petroleum Science Bulletin,2022,7(3):343-364.(in Chinese))
|
[2] |
许天福,袁益龙,姜振蛟,等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报:地球科学版,2016,46(4):1 139-1 152.(XU Tianfu,YUAN Yilong,JIANG Zhenjiao,et al. Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J]. Journal of Jilin University:Earth Science,2016,46(4):1 139-1 152.(in Chinese))
|
[3] |
廖 涛,陈跃都,梁卫国,等. 高温及动态剪切下花岗岩裂隙渗流与传热特性试验研究[J]. 岩石力学与工程学报,2024,43(9): 2 273-2 288.(LIAO Tao,CHEN Yuedu,LIANG Weiguo,et al. Experimental study on seepage and heat transfer characteristics of granite fractures under high temperature and dynamic shear[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(9):2 273-2 288.(in Chinese))
|
[4] |
BREEDE K,DZEBISASHVILI K,LIU X,et al. A systematic review of enhanced(or engineered) geothermal systems:past,present and future[J]. Geothermal Energy,2013,1:1-27.
|
[5] |
许天福,张延军,于子望,等. 干热岩水力压裂实验室模拟研究[J]. 科技导报,2015,33(19):35-39.(XU Tianfu,ZHANG Yanjun,YU Ziwang,et al. Laboratory simulation study on hydraulic fracturing of hot dry rock[J]. Science and Technology Review,2015,33(19):35-39.(in Chinese))
|
[6] |
周长冰. 高温岩体水压致裂钻孔起裂与裂缝扩展机制及其应用[博士学位论文][D]. 徐州:中国矿业大学,2017.(ZHOU Changbing. Mechanisms of initiation and propagation of hydraulic fracturing in boreholes in high-temperature rock masses and their applications[Ph. D. Thesis][D]. Xuzhou:China University of Mining and Technology,2017.(in Chinese))
|
[7] |
杨典森,周 云,周再乐. 含界面储层水力压裂试验与数值模拟研究进展[J]. 岩石力学与工程学报,2022,41(9):1 771-1 794.(YANG Diansen,ZHOU Yun,ZHOU Zaile. Research progress in hydraulic fracturing experiments and numerical simulations of reservoirs with interfaces[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1 771-1 794.(in Chinese))
|
[8] |
邵长跃,潘鹏志,赵德才,等. 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学,2020,41(7):2 411-2 421.(SHAO Changyue,PAN Pengzhi,ZHAO Decai,et al. Study on the influence of flow rate on fracturing pressure and pressure buildup rate in hydraulic fracturing[J]. Rock and Soil Mechanics,2020,41(7): 2 411-2 421.(in Chinese))
|
[9] |
ZHANG Y,MA Y,HU Z,et al. An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite[J]. Renewable Energy,2019,140:615-624.
|
[10] |
SKOUMAL R J,RIES R,BRUDZINSKI M R,et al. Earthquakes induced by hydraulic fracturing are pervasive in Oklahoma[J]. Journal of Geophysical Research:Solid Earth,2018,123(12):10 918-10 935.
|
[11] |
BROWN D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]// Proceedings of the Twenty-fifth Workshop on Geothermal Reservoir Engineering. [S. l.]:[s. n.],2000:233-238.
|
[12] |
CHEN Y,NAGAYA Y,ISHIDA T. Observations of fractures induced by hydraulic fracturing in anisotropic granite[J]. Rock Mechanics and Rock Engineering,2015,48:1 455-1 461.
|
[13] |
HOU P,GAO F,JU Y,et al. Effect of water and nitrogen fracturing fluids on initiation and extension of fracture in hydraulic fracturing of porous rock[J]. Journal of Natural Gas Science and Engineering,2017,45:38-52.
|
[14] |
胡永鹏. 高温高压下花岗岩水力/超临界二氧化碳压裂特征与机制研究[硕士学位论文][D]. 长沙:中南大学,2022.(HU Yongpeng. Study on the characteristics and mechanisms of hydraulic and supercritical carbon dioxide fracturing in granite under high temperature and high pressure[M. S. Thesis][D]. Changsha:Central South University,2022.(in Chinese))
|
[15] |
ISAKA B L A,RANJITH P G,RATHNAWEERA T D,et al. Testing the frackability of granite using supercritical carbon dioxide:Insights into geothermal energy systems[J]. Journal of CO2 Utilization,2019,34:180-197.
|
[16] |
ISHIDA T,CHEN Q,MIZUTA Y,et al. Influence of fluid viscosity on the hydraulic fracturing mechanism[J]. Journal of Energy Resources Technology-Transactions of the ASME.,2004,126(3):190-200.
|
[17] |
ISHIDA T,AOYAGI K,NIWA T,et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters,2012,39(16):L13609.
|
[18] |
ISHIDA T,CHEN Y,BENNOUR Z,et al. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments[J]. Journal of Geophysical Research:Solid Earth,2016,121(11):8 080-8 098.
|
[19] |
KIZAKI A,TANAKA H,OHASHI K,et al. Hydraulic fracturing in Inada granite and Ogino tuff with super critical carbon dioxide[C]// ISRM International Symposium-Asian Rock Mechanics Symposium. [S. l.]:[s. n.],2012:15-19.
|
[20] |
LI X,FENG Z,HAN G,et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O,CO2 and N2[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2016,2(2):63-76.
|
[21] |
ZHANG X,LU Y,TANG J,et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel,2017,190:370-378.
|
[22] |
ZHAO Z,LI X,HE J,et al. A laboratory investigation of fracture propagation induced by supercritical carbon dioxide fracturing in continental shale with interbeds[J]. Journal of Petroleum Science and Engineering,2018,166:739-746.
|
[23] |
ZHOU J,LIU G,JIANG Y,et al. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale:an experimental study[J]. Journal of Natural Gas Science and Engineering,2016,36:369-377.
|
[24] |
JIA Y,LU Y,ELSWORTH D,et al. Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing[J]. Journal of Petroleum Science and Engineering,2018,165:284-297.
|
[25] |
GAO Y,CHEN W,LI J,et al. Fracturing mechanism of granite by supercritical carbon dioxide under true triaxial stress[J]. Geomechanics for Energy and the Environment,2022,32:00406.
|
[26] |
ZHANG W,WANG C,GUO T,et al. Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress[J]. Energy,2021,221:19886.
|
[27] |
YANG Y,HU D,WANG H,et al. Experimental study on SC-CO2 fracturing of granite under real-time high temperature and true triaxial stress[J]. International Journal of Rock Mechanics and Mining Sciences,2024,183:05889.
|
[28] |
多 吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学,2003,5(1):42-47.(DUO Ji. The basic characteristics of the Yangbajing geothermal field:A typical high temperature geothermal system[J]. Engineering Science,2003,5(1):42-47.(in Chinese))
|
[29] |
VERDON J P,KENDALL J M,MAXWELL S C. A comparison of passive seismic monitoring of fracture stimulation from water and CO2 injection[J]. Geophysics,2010,75(3):MA1-MA7.
|
[30] |
PRAMUDYO E,GOTO R,WATANABE N,et al. CO2 injection- induced complex cloud-fracture networks in granite at conventional and superhot geothermal conditions[J]. Geothermics,2021,97:02265.
|
[31] |
黄长松,梁卫国,陈跃都,等. 循环高温作用下花岗岩裂缝渗流-传热特性试验研究[J]. 岩石力学与工程学报,2023,42(9):2 253-2 265.(HUANG Changsong,LIANG Weiguo,CHEN Yuedu,et al. Experimental study on seepage and heat transfer characteristics of single fracture granite under high-temperature cycle conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2 253-2 265.(in Chinese))
|
[32] |
靳佩桦. 高温裂隙花岗岩渗流-传热中裂隙围岩演变特征研究[博士学位论文][D]. 太原:太原理工大学,2019.(JIN Peihua. Study on the evolution characteristics of fractured surrounding rock in seepage-heat transfer processes in high-temperature fractured granite[Ph. D. Thesis][D]. Taiyuan:Taiyuan University of Technology,2019.(in Chinese))
|
[33] |
SHU B,WANG Y,ZHU R,et al. Experimental study of the heat transfer characteristics of single geothermal fracture at different reservoir temperature and in situ stress conditions[J]. Applied Thermal Engineering,2022,207:18195.
|
[34] |
BAI B,HE Y,LI X,et al. Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core[J]. Applied Thermal Engineering,2017, 116:79-90.
|
[35] |
KOLAWOLE O,ISPAS I. Interaction between hydraulic fractures and natural fractures:current status and prospective directions[J]. Journal of Petroleum Exploration and Production Technology,2020,10: 1 613-1 634.
|
[36] |
WANG W,OLSON J E,PRODANOVI? M,et al. Interaction between cemented natural fractures and hydraulic fractures assessed by experiments and numerical simulations[J]. Journal of Petroleum Science and Engineering,2018,167:506-516.
|
[37] |
TSE R,CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1979,16(5):303-307.
|
[38] |
HAIMSON B,FAIRHURST C. Initiation and extension of hydraulic fractures in rocks[J]. Society of Petroleum Engineers Journal,1967,7(3):310-318.
|
[39] |
CHEN Y,LIAN H,LIANG W,et al. The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2019,113:9-71.
|
[40] |
SHU B,ZHU R,TAN J,et al. Evolution of permeability in a single granite fracture at high temperature[J]. Fuel,2019,242:12-22.
|