[1] |
袁晶晶,陈益峰,胡 冉,等. 岩溶地区高面板坝渗流特性与防渗安全评价[J]. 岩石力学与工程学报,2024,43(2):481-494.(YUAN Jingjing,CHEN Yifeng,HU Ran,et al. Seepage behavior and its control performance assessment for a high concrete faced rockfill dam in karst areas[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(2):481-494.(in Chinese))
|
[2] |
赵 瑞,许 模. 水库岩溶渗漏及防渗研究综述[J]. 地下水,2011,33(2):20-22.(ZHAO Rui,XU Mo. Summary on reservoir karst seepage and anti-seepage research[J]. Ground Water,2011,33(2):20-22.(in Chinese))
|
[3] |
刘思楠,张力为,苏学斌,等. 二氧化碳咸水层封存条件矿物溶解与沉淀化学反应建模与参数取值综述[J]. 水利水电技术,2020,51(11):13-22.(LIU Sinan,ZHANG Liwei,SU Xuebin,et al. Review on modeling and parameter selection for chemical reactions of mineral dissolution and precipitation under the condition of CO2 sequestration in saline aquifers[J]. Water Resources and Hydropower Engineering,2020,51(11):13-22.(in Chinese))
|
[4] |
夏盈莉,许天福,杨志杰,等. 深部储层中CO2沿断层泄漏量的影响因素[J]. 环境科学研究,2017,30(10):1 533-1 541.(XIA Yingli,XU Tianfu,YANG Zhijie,et al. Factors influencing amount of CO2 leakage through a fault zone in deep storage aquifer[J]. Research of Environmental Sciences,2017,30(10):1 533-1 541.(in Chinese))
|
[5] |
李 琦,宋然然,匡冬琴,等. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展,2016,31(3):225-235.(LI Qi,SONG Ranran,KUANG Dongqin,et al. Status and advances of abandoned process of wells for CO2 geological storage[J]. Advances in Earth Science,2016,31(3):225-235.(in Chinese))
|
[6] |
杨春和,贺 涛,王同涛. 层状盐岩地层油气储库建造技术研发进展[J]. 油气储运,2022,41(6):614-624.(YANG Chunhe,HE Tao,WANG Tongtao. Research and development progress of oil and gas storage construction technology in bedded salt rock formation[J]. Oil and Gas Storage and Transportation,2022,41(6):614-624.(in Chinese))
|
[7] |
李金龙,刘继芹,李庆东,等. 盐岩储库水溶建腔机理与模拟方法研究进展[J]. 隧道与地下工程灾害防治,2020,2(4):1-8.(LI Jinlong,LIU Jiqin,LI Qingdong,et al. Advances in mechanism and modeling method for solution mining of salt cavern storage[J]. Hazard Control in Tunnelling and Underground Engineering,2020,2(4):1-8.(in Chinese))
|
[8] |
LADD A J C,SZYMCZAK P. Reactive flows in porous media:challenges in theoretical and numerical methods[J]. Annual Review of Chemical and Biomolecular Engineering,2021,12(1):543-571.
|
[9] |
NOIRIEL C,DAVAL D. Pore-scale geochemical reactivity associated with CO2 storage:new frontiers at the fluid-solid interface[J]. Accounts of Chemical Research,2017,50(4):759-768.
|
[10] |
盛金昌,李凤滨,姚德生,等. 渗流-应力-化学耦合作用下岩石裂隙渗透特性试验研究[J]. 岩石力学与工程学报,2012,31(5):1 016-1 025.(SHENG Jinchang,LI Fengbin,YAO Desheng,et al. Experimental study of seepage properties in rocks fracture under coupled hydro-mechano-chemical process[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):1 016-1 025.(in Chinese))
|
[11] |
DETWILER R L,RAJARAM H. Predicting dissolution patterns in variable aperture fractures:Evaluation of an enhanced depth-averaged computational model[J]. Water Resources Research,2007,43(4):2006WR005147.
|
[12] |
RODED R,AHARONOV E,HOLTZMAN R,et al. Reactive flow and homogenization in anisotropic media[J]. Water Resources Research,2020,56(12):e2020WR027518.
|
[13] |
STARCHENKO V,LADD A J C. The development of wormholes in laboratory-scale fractures:perspectives from three-dimensional simulations[J]. Water Resources Research,2018,54(10):7 946-7 959.
|
[14] |
SZYMCZAK P,LADD A J C. The initial stages of cave formation:Beyond the one-dimensional paradigm[J]. Earth and Planetary Science Letters,2011,301(3/4):424-432.
|
[15] |
BECKINGHAM L E,MITNICK E H,STEEFEL C I,et al. Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment[J]. Geochimica et Cosmochimica Acta,2016,188:310-329.
|
[16] |
LE TRAON C,AQUINO T,BOUCHEZ C,et al. Effective kinetics driven by dynamic concentration gradients under coupled transport and reaction[J]. Geochimica et Cosmochimica Acta,2021,306:189-209.
|
[17] |
AL-KHULAIFI Y,LIN Q,BLUNT M J,et al. Reaction rates in chemically heterogeneous rock:coupled impact of structure and flow properties studied by X-ray microtomography[J]. Environmental Science and Technology,2017,51(7):4 108-4 116.
|
[18] |
DENG H,MOLINS S,TREBOTICH D,et al. Pore-scale numerical investigation of the impacts of surface roughness:Upscaling of reaction rates in rough fractures[J]. Geochimica et Cosmochimica Acta,2018,239:374-389.
|
[19] |
ZHOU C X,HU R,LI H W,et al. Pore-scale visualization and quantification of dissolution in microfluidic rough channels[J]. Water Resources Research,2022,58(11):e2022WR032255.
|
[20] |
DETWILER R L,GLASS R J,BOURCIER W L. Experimental observations of fracture dissolution:the role of peclet number on evolving aperture variability[J]. Geophysical Research Letters,2003,30(12):1 648.
|
[21] |
WANG T,HU R,YANG Z,et al. Transitions of dissolution patterns in rough fractures[J]. Water Resources Research,2022,58(1):e2021WR030456.
|
[22] |
LI P,DENG H,MOLINS S. The effect of pore-scale two-phase flow on mineral reaction rates[J]. Frontiers in Water,2022,3:734518.
|
[23] |
ZHOU C X,HU R,DENG H,et al. Surface-volume scaling controlled by dissolution regimes in a multiphase flow environment[J]. Geophysical Research Letters,2023,50(18):e2023GL104067.
|
[24] |
郭静芸,毕鑫涛,方然可,等. 可溶岩化学溶蚀试验方法研究综述[J]. 水文地质工程地质,2020,47(4):24-34.(GUO Jingyun,BI Xintao,FANG Ranke,et al. Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology and Engineering Geology,2020,47(4):23-34.(in Chinese))
|
[25] |
ALKATTAN M,OELKERS E H,DANDURAND J L,et al. An experimental study of calcite and limestone dissolution rates as a function of pH from-1 to 3 and temperature from 25 ℃ to 80 ℃[J]. Chemical Geology,1998,151(1/4),199-214.
|
[26] |
SIMON B. Dissolution rates of NaCl and KCl in aqueous solution[J]. Journal of Crystal Growth,1981,58(2):789-794.
|
[27] |
佘 敏,蒋义敏,胡安平,等. 碳酸盐岩溶蚀模拟实验技术进展及应用[J]. 海相油气地质,2020,25(1):12-21.(SHE Min,JIANG Yimin,HU Anping,et al. The progress and application of dissolution simulation of carbonate rock[J]. Marine Origin Petroleum Geology,2020,25(1):12-21.(in Chinese))
|
[28] |
CUBILLAS P,KÖHLER S,PRIETO M,et al. How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution—CaCO3 precipitation[J]. Geochimica et Cosmochimica Acta,2005,69(23):5 459-5 476.
|
[29] |
FISCHER C,FINKELDEI S,BRANDT F,et al. Direct measurement of surface dissolution rates in potential nuclear waste forms:the example of pyrochlore[J]. ACS Applied Materials and Interfaces,2015,7(32):17 857-17 865.
|
[30] |
周 辉,汤艳春,胡大伟,等. 盐岩裂隙渗流-溶解耦合模型及试验研究[J]. 岩石力学与工程学报,2006,25(5):946-950.(ZHOU Hui,TANG Yanchun,HU Dawei,et al. Study on coupled penetrating-dissolving model and experiment for salt rock cracks[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):946-950.(in Chinese))
|
[31] |
DENG H,FITTS J P,TAPPERO R V,et al. Acid erosion of carbonate fractures and accessibility of arsenic-bearing minerals:in operando synchrotron-based microfluidic experiment[J]. Environmental Science and Technology,2020,54(19):12 502-12 510.
|
[32] |
甘满光,缪秀秀,张力为,等. CT扫描技术在二氧化碳地质利用与封存领域的应用研究综述[J]. 水利水电技术,2019,50(8):174-184.(GAN Manguang,MIAO Xiuxiu,ZHANG Liwei,et al. Review on applications of CT scanning technique in the field of CO2 geological utilization and storage[J]. Water Resources and Hydropower Engineering,2019,50(8):174-184.(in Chinese))
|
[33] |
AL‐KHULAIFI Y,LIN Q,BLUNT M J,et al. Pore‐scale dissolution by CO2 saturated brine in a multimineral carbonate at reservoir conditions:impact of physical and chemical heterogeneity[J]. Water Resources Research,2019,55(4):3 171-3 193.
|
[34] |
LING B,SODWATANA M,KOHLI A,et al. Probing multiscale dissolution dynamics in natural rocks through microfluidics and compositional analysis[J]. Proceedings of the National Academy of Sciences,2022,119(32):e2122520119.
|
[35] |
ZHANG Y,KHORSHIDIAN H,MOHAMMADI M,et al. Functionalized multiscale visual models to unravel flow and transport physics in porous structures[J]. Water Research,2020,175:115676.
|
[36] |
张瑾璇,刘汉龙,肖 杨. 液滴微流控芯片系统研发与微生物矿化机理研究[J]. 岩土工程学报,2024,46(6):1 236-1 245.(ZHANG Jinxuan,LIU Hanlong,XIAO Yang. Development of droplet microfluidic system and regime of biomineralization[J]. Chinese Journal of Geotechnical Engineering,2024,46(6):1 236-1 245.(in Chinese))
|
[37] |
胡 冉,陈益峰,万嘉敏,等. 超临界CO2-水两相流与CO2毛细捕获:微观孔隙模型实验与数值模拟研究[J]. 力学学报,2017,49(3):638-648.(HU Ran,CHEN Yifeng,WAN Jiamin,et al. Supercritical CO2 water displacements and CO2 capillary trapping:micromodel experiment and numerical simulation[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):638-648.(in Chinese))
|
[38] |
何 想,马国梁,汪 杨,等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报,2020,42(6):1 005-1 012.(HE Xiang,MA Guoliang,WANG Yang,et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering,2020,42(6):1 005-1 012.(in Chinese))
|
[39] |
赵 常,何 想,胡 冉,等. 微生物矿化动力学理论与模拟[J]. 岩土工程学报,2022,44(6):1 096-1 105.(ZHAO Chang,HE Xiang,HU Ran,et al. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering,2022,44(6):1 096-1 105.(in Chinese))
|
[40] |
SONG W,OGUNBANWO F,STEINSBØ M,et al. Mechanisms of multiphase reactive flow using biogenically calcite-functionalized micromodels[J]. Lab on a Chip,2018,18(24):3 881-3 891.
|
[41] |
SHEN W,XU Y,LI X,et al. Numerical simulation of gas and water flow mechanism in hydraulically fractured shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering,2016,35:726-735.
|
[42] |
李 博,芮守超,赵志宏. 含裂隙碳酸盐岩酸化中超临界CO2对虫孔生长的影响初探[J]. 地质学报,2023,97(6):2 084-2 091.(LI Bo,RUI Shouchao,ZHAO Zhihong. Effect of supercritical CO2 on wormhole generationin carbonatite acidification[J]. Acta Geologica Sinica,2023,97(6):2 084-2 091.(in Chinese))
|
[43] |
沈伟军,李熙喆,刘晓华,等. 裂缝性气藏水侵机理物理模拟[J]. 中南大学学报:自然科学版,2014,45(9):3 283-3 287.(SHEN Weijun,LI Xizhe,LIU Xiaohua,et al. Physical simulation of water influx mechanism in fractured gas reservoirs[J]. Journal of Central South University:Science and Technology,2014,45(9):3 283-3 287.(in Chinese))
|
[44] |
BOUTT D F,GRASSELLI G,FREDRICH J T,et al. Trapping zones:the effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture[J]. Geophysical Research Letters,2006,33(21):2006GL027275.
|
[45] |
ZHU G,WEI Z,LI W,et al. Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes:an implication to the stability of geologic carbon sequestration[J]. Journal of Colloid and Interface Science,2023,650:1 003-1 012.
|
[46] |
LEVENSON Y,RYB U,EMMANUEL S. Comparison of field and laboratory weathering rates in carbonate rocks from an Eastern Mediterranean drainage basin[J]. Earth and Planetary Science Letters,2017,465:176-183.
|
[47] |
NOIRIEL C,GOUZE P,MADÉ B. 3D analysis of geometry and flow changes in a limestone fracture during dissolution[J]. Journal of Hydrology,2013,486:211-223.
|
[48] |
ALKATTAN M,OELKERS E H,DANDURAND J L,et al. Experimental studies of halite dissolution kinetics,1 The effect of saturation state and the presence of trace metals[J]. Chemical Geology,1997,137(3/4):201-219.
|
[49] |
CALCADA L A,MARTINS L A,SCHEID C M,et al. Mathematical model of dissolution of particles of NaCl in well drilling:determination of mass transfer convective coefficient[J]. Journal of Petroleum Science and Engineering,2015,126:97-104.
|
[50] |
ALARJI H,ALZAHID Y,REGENAUER-LIEB K. Acid stimulation in carbonates:Microfluidics allows accurate measurement of acidic fluid reaction rates in carbonate rocks by quantifying the produced CO2 gas[J]. Journal of Natural Gas Science and Engineering,2022,99:104444.
|
[51] |
REMBERT F,LEROY P,LASSIN A,et al. Microfluidics and spectral induced polarization for direct observation and petrophysical modeling of calcite dissolution[J]. Geophysical Research Letters,2024,51(24):e2024GL111271.
|
[52] |
MARTINI M,FRANCUS P,SCHRÖER L,et al. Characterisation of geological samples with dual-energy XCT:a comparison of three different scanners[J]. Geostandards and Geoanalytical Research,2025,https://doi.org/10.1111/ggr.12608.
|