|
|
|
| Critical state criterion for rock brittle-ductile transition based on curved Mohr strength theory |
| ZHANG Jing1, 2, 3, ZHOU Zonghong1, 3, LIU Hai2, OUYANG Zhihua4, HAN Yansong1 |
(1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 654093, China;
2. Yunnan Gold Minging Group Co., Ltd., Kunming, Yunnan 650200, China; 3. Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming, Yunnan 654093, China; 4. College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China) |
|
|
|
|
Abstract The critical state criterion for the rock brittle-ductile transition holds significant practical importance for assessing the forms and frequencies of engineering disasters in deep rock masses. By analyzing the critical state characteristics of the rock brittle-ductile transition as defined by the curved Mohr strength theory, this study proposes a critical state criterion that incorporates factors such as fracture modulus, uniaxial tensile strength, internal cohesion, and fracture angle, based on the Mohr-Wedge criterion derived from the aforementioned theory. The applicability of this critical state criterion is validated using data from rock triaxial compression tests. The results indicate that the critical state criterion for rock brittle-ductile transition, which quantitatively relates to uniaxial compressive strength, exhibits poor overall fitting. In contrast, the critical state criterion based on the Mohr-Wedge criterion aligns more closely with the transition trend from rock brittleness to ductility. Furthermore, the rock fracture angle included in this critical state criterion does not alter the confining pressure value at the critical state; rather, it affects the gradient of the strength curve in the ductile phase. To prevent the gradient of the strength curve in the ductile stage from exceeding that of the brittle stage, it is recommended that the fracture angle in the critical state of the brittle-ductile transition be set to 45°. The critical state criterion for rock brittle-ductile transition proposed in this work can serve as a valuable reference for understanding the transition and changes in the strength curve during the ductile phase.
|
|
|
|
|
|
[1] PATERSON M S,WONG T F. Experimental rock deformation - the brittle field[M]. New York:Spinger-Verlag,2005:211–237.
[2] HE M C,WANG Q. Rock dynamics in deep mining[J]. International Journal of Mining Science and Technology,2023,33(9):1 065–1 082.
[3] 胡 坤,赵伦洋,李鹏飞,等. 深部硬岩脆–延性转化行为的细观损伤模型[J]. 工程科学与技术,2024,56(3):11–20.(HU Kun,ZHAO Lunyang,LI Pengfei,et al. Micromechanical damage model for the brittle-ductile transition in deep hard rock[J]. Advanced Engineering Sciences,2024,56(3):11–20.(in Chinese))
[4] WANG S S,XU W Y,YANG L L. Experimental and elastoplastic model investigation on brittle-ductile transition and hydro- mechanical behaviors of cement mortar[J]. Construction and Building Materials,2019,224:19–28.
[5] BALMER G A. General analytical solution for Mohr envelope[J]. American Society for Testing and Materials,1952,52:1 260–1 271.
[6] BARTON N. The shear strength of rock and rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1976,13(9):255–279.
[7] 吴顺川. 岩石力学[M]. 北京:高等教育出版社,2021:89–90.(WU Shunchuan. Rock mechanics[M]. Beijing:Higher Education Press,2021:89–90.(in Chinese))
[8] SCHWARTZ A E. Failure of rock in the triaxial shear test[C]// Proceedings of the 6th Symposium on Rock Mechanics. Rolla,Missouri:[s. n.],1964:109–135.
[9] MOGI K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow[J]. Bulletin of Earthquake Research Institute,1966,44:215–232.
[10] HOEK E. Strength of jointed rock masses[J]. Geotechnique,1983,23(3):187–223.
[11] SINGH M,RAJ A,SINGH B. Modified Mohr-Coulomb criterion for nonlinear triaxial and polyaxial strength on intact rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2001,48:546–555.
[12] BARTON N. Shear strength criteria for rock,rock joints,rockfill and rock masses:Problems and some solutions[J]. Journal of Rock Mechanics and Geotechnical Engineering,2013,5:249–261.
[13] 徐松林,吴 文,王广印,等.大理岩等围压三轴压缩全过程研究I:三轴压缩全过程的峰前、峰后卸围压全过程实验[J]. 岩石力学与工程学报,2001,20(6):763–767.(XU Songlin,WU Wen,WANG Guangyin,et al. Study on complete procedures of marble under triaxial compression I:testing study on complete procedure of triaxial compression and the processes of unloading confining at the pre-peak and post-peak[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(6):763–767.(in Chinese))
[14] 杨圣奇,苏承东,徐卫亚. 大理岩常规三轴压缩下强度和变形特性的试验研究[J].岩土力学,2005,26(3):475–478.(YANG Shengqi,SU Chengdong,XU Weiya. Experimental investigation on strength and deformation properties of marble under conventional triaxial compression[J]. Rock and Soil Mechanics,2005,26(3):475–478.(in Chinese))
[15] 张 晶,任凤玉,何荣兴,等.包含岩石临界状态的Mohr-Wedge准则的适用性研究[J]. 东北大学学报:自然科学版,2021,42(4):567–575.(ZHANG Jing,REN Fengyu,HE Rongxing,et al. Research on applicability of the Mohr-Wedge criterion including rock critical state[J]. Journal of Northeastern University:Natural Science,2021,42(4):567–575.(in Chinese))
[16] 张 晶,任凤玉,何荣兴,等.三轴条件下岩石临界状态围压的适用性研究[J]. 采矿与安全工程学报,2022,39(1):154–162.(ZHANG Jing,REN Fengyu,HE Rongxing,et al. Applicability of confining pressure of rocks in critical state under conventional triaxial compression[J]. Journal of Mining and Safety Engineering,2022,39(1):154–162.(in Chinese))
[17] 谢和平,高明忠,付成行,等. 深部不同深度岩石脆延转化力学行为研究[J]. 煤炭学报,2021,46(3):701–715.(XIE Heping,GAO Mingzhong,FU Chenghang,et al. Mechanical behavior of brittle-ductile transition in rocks at different depths[J]. Journal of China Coal Society,2021,46(3):701–715.(in Chinese))
[18] 张 超,俞 缙,白 允,等. 基于强度理论的岩石脆延转化统计损伤本构模型[J]. 岩石力学与工程学报,2023,42(2):307–316.(ZHANG Chao,YU Jin,BAI Yun,et al. Statistical damage constitutive model of rock brittle-ductile transition based on strength theory[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):307–316.(in Chinese))
[19] CHENG G X,JIANG B,LI F L,et al. Experimental study on brittle-to-ductile transition mechanism of lower Silurian organic-rich shale in south China[J]. International Journal of Rock Mechanics and Mining Sciences,2023,170:1–26.
[20] OUYANG Z,ELSWORTH D.A phenomenological failure criterion for brittle rock[J]. Rock Mechanics and Rock Engineering,1991,24(2):133–153.
[21] 刘泉声,刘恺德,朱杰兵,等. 高应力下原煤三轴压缩力学特性研究[J]. 岩石力学与工程学报,2014,33(1):24–34.(LIU Quansheng,LIU Kaide,ZHU Jiebing,et al. Study of mechanical properties of raw coal under high stress with triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):24–34.(in Chinese))
[22] 尤明庆. 岩石指数型强度准则在主应力空间的特征[J]. 岩石力学与工程学报,2009,28(8):1 541–1 551.(YOU Mingqing. Characteristics of exponential strength criterion of rock in principal stress space[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1 541–1 551.(in Chinese))
[23] 张 晶. Mohr-Wedge岩石弹塑性破坏准则的应用研究[硕士学位论文][D]. 武汉:武汉科技大学,2017.(ZHANG Jing. Research on the application of Mohr Wedge rock elastic-plastic failure criterion[M. S. Thesis][D]. Wuhan:Wuhan University of Science and Technology,2017.(in Chinese))
[24] 彭 帅,张希巍,冯夏庭,等. 等向压缩及偏压加载下锦屏大理岩变形特性研究[J]. 岩土力学,2017,38(12):3 532–3 539.(PENG Shuai,ZHANG Xiwei,FENG Xiating,et al. Deformation behavior of Jinping marble under isotropic compression and deviatoric stress loading conditions[J]. Rock and Soil Mechanics,2017,38(12):3 532–3 539.(in Chinese))
[25] BESUELLE P,DESRUES J,RAYNAUD S. Experiment characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(8):1 223–1 237.
[26] 肖桃李,黄 梅,李新平. 考虑围压效应的深埋大理岩强度变形特性研究[J]. 地下空间与工程学报,2018,14(2):362–368.(XIAO Taoli,HUANG Mei,LI Xinping. Research on strength and deformation with marble of deep rock mass considering confining pressure effect[J]. Chinese Journal of Underground Space and Engineering,2018,14(2):362–368.(in Chinese))
[27] YOU M Q. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):195–204.
[28] MOGI K. Experimental rock mechanics[M]. London:Taylor and Francis,2007:51–66.
[29] 苏承东,付义胜. 红砂岩三轴压缩变形与强度特征的试验研究[J]. 岩石力学与工程学报,2014,33(增1):3 164–3 169.( SU Chengdong,FU Yisheng. Experimental study of triaxial compression deformation and strength characteristics of red sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Supp.1):3 164–3 169.(in Chinese))
[30] 姜 玥,周 辉,卢景景,等. 不同应力路径下灰砂岩力学特性与强度参数研究[J]. 岩石力学与工程学报,2019,38(4):815–824.(JIANG Yue,ZHOU Hui,LU Jingjing,et al. Study on mechanical properties and strength parameters of gray sandstone under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):815–824.(in Chinese))
[31] 汪 斌,朱杰兵,邬爱清,等. 高应力下岩石非线性强度特性的试验验证[J]. 岩石力学与工程学报,2010,29(3):542–548.(WANG Bin,ZHU Jiebing,WU Aiqing,et al. Experimental validation of nonlinear strength property of rock under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(3):542–548.(in Chinese))
[32] MOSTYN G,DOUGLAS K. Strength of intact rock and rock masses[C]// ISRM International Symposium. [S. l.]:[s. n.],2000:6–8.
[33] GOWD T N,RUMMEL F. Effect of confining pressure on the fracture behavior of a porous rock[J]. International Journal of Rock Mechanics and Mining Sciences,1980,37(2):225–229.
[34] 李 斌. 高围压条件下岩石破坏特征及强度准则研究[博士学位论文][D]. 武汉:武汉科技大学,2015.(LI Bin. Study on rock failure characteristics and rock strength criteria under high confining pressure[Ph. D. Thesis][D]. Wuhan:Wuhan University of Science and Technology,2015.(in Chinese))
[35] SWANSON S R,BROWN W S. An observation of loading path independence of fracture in rock[J]. International Journal of Rock Mechanics and Mining Sciences,1971,8(3):277–281.
[36] CARTER B J,DUNCAN S E J,LAJTAI E Z. Fitting strength criteria to intact rock[J]. Geotechnical and Geological Engineering,1991,9(1):73–81.
[37] MOGI K. Fracture and flow of rocks under high triaxial compression[J]. Journal of Geophysical Research-Atmospheres,1971,76(5):1 255–1 269.
|
|
|
|