|
|
|
| Comprehensive evaluation of compressed air energy storage in depleted unconventional oil and gas reservoirs: Feasibility and key issues |
| BI Zhenhui1, 2, YANG Chunhe1, GUO Yintong1, MA Hongling1, WANG Lei1, CHANG Xin1, WU Mingyang1, GUO Wuhao1, HE Yuting1, ZHAO Guokai1 |
| (1. Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China) |
|
|
|
|
Abstract With deteriorating environmental conditions and accelerating energy transformations, the development of diversified energy storage technologies has become an urgent necessity to address the imbalance between energy supply and demand. This paper proposes a novel energy storage solution that utilizes unconventional oil and gas reservoirs as compressed air energy storage sites, aiming to enhance resource efficiency by repurposing depleted or nearly depleted unconventional reservoirs. This approach leverages existing hydraulic fracturing technology to establish a compressed air energy storage system by retaining the fracturing wells and surface infrastructure, while incorporating electric motors, compressors, expanders, generators, and electrical circuitry. Comprehensive research and systematic analysis reveal several key findings: the large-scale geological reserves of unconventional oil and gas present a promising development outlook for this new method; the availability of extensive geological information and mature surface facilities can significantly lower initial investment costs; the vast number of oil and gas wells (2 677) and ample energy storage capacity (28 500 m³ per well) provide advantages for large-scale application; potential energy storage capacity within pore spaces supports low-power energy storage for extended durations (ultra-long duration); when combined with the distribution of unconventional oil and gas resources and renewable energy, the provinces of Sichuan, Shaanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, and Shanxi emerge as optimal regions for implementing this new energy storage method; and the tight integration of several established technologies offer a stable technical foundation for realizing this innovative energy storage approach. This demonstrates the considerable feasibility of transforming depleted unconventional oil and gas reservoirs into compressed gas energy storage systems. However, several scientific and technological challenges warrant attention: the physical-mechanical degradation of reservoirs under prolonged hydration and cyclic loading, and its impact on the long-term stability of energy storage systems; the effects of rock failure or proppant flowback on the stability of energy storage spaces and equipment; the assessment of the integrity of long-term injection and production in energy storage spaces and the seal integrity of wellbores, along with their influence on storage efficiency and the safe operation of energy storage systems; the impact of compressed air temperature on the long-term stability, integrity, and downhole equipment of the energy storage system; and the influence of fracture network morphology on injection and production rates and the conversion efficiency of the energy storage system. Compressed gas energy storage systems in depleted unconventional oil and gas reservoirs present a novel solution for energy storage that could significantly enhance China′s energy storage industry.
|
|
|
|
|
|
[1] MORGAN J,PATOMÄKI H. Planetary good governance after the Paris Agreement: The case for a global greenhouse gas tax[J]. Journal of Environmental Management,2021,292:112753.
[2] 郭武豪,郭印同,常 鑫,等. 实时高温高应力真三轴压裂试验系统研制与应用[J]. 岩石力学与工程学报,2025,44(6):1 539– 1 552.(GUO Wuhao,GUO Yintong,CHANG Xin,et al. Development and application of a real-time high-temperature and high-stress true triaxial fracturing test system[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(6):1 539–1 552.(in Chinese))
[3] 国家能源局. 我国能源绿色低碳转型驶入“快车道”[N/OL]. https://www.nea.gov.cn/2021-05/28/c_139975172.htm.(National Energy Administration. China's energy green low-carbon transition into the “fast lane”[N]. https://www.nea.gov.cn/2021-05/28/c_139975172. htm.(in Chinese))
[4] BRAFF W A,MUELLER J M,TRANCIK J E. Value of storage technologies for wind and solar energy[J]. Nature Climate Change,2016,6(10):964–969.
[5] EMRANI A,BERRADA A. A comprehensive review on techno- economic assessment of hybrid energy storage systems integrated with renewable energy[J]. Journal of Energy Storage,2024,84:111010.
[6] SCHMIDT O,MELCHIOR S,HAWKES A,et al. Projecting the future levelized cost of electricity storage technologies[J]. Joule,2019,3(1):81–100.
[7] SCHMIDT O,HAWKES A,GAMBHIR A,et al. The future cost of electrical energy storage based on experience rates[J]. Nature Energy,2017,2(8):1–8.
[8] 国家电网公司“电网新技术前景研究”项目咨询组. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化,2013,37(1):3–8.(Consulting group for the State Grid Corporation of China?s“Prospect Research on New Power Grid Technologies”Project. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems,2013,37(1):3–8.(in Chinese))
[9] 梅生伟,公茂琼,秦国良,等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术,2017,41(10):3 392–3 399. (MEI Shengwei,GONG Maoqiong,QIN Guoliang,et al. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power System Technology,2017,41(10):3 392–3 399.(in Chinese))
[10] LIU W,LI Q,YANG C,et al. The role of underground salt caverns for large-scale energy storage:A review and prospects[J]. Energy Storage Materials,2023:103045.
[11] ZHANG R,CHEN M,TANG H,et al. Production performance simulation of a horizontal well in a shale gas reservoir considering the propagation of hydraulic fractures[J]. Geoenergy Science and Engineering,2023,221:111272.
[12] 郑 民,李建忠,吴晓智,等. 我国常规与非常规天然气资源潜力、重点领域与勘探方向[J]. 天然气地球科学,2018,29(10):1 383– 1 397.(ZHENG Min,LI Jianzhong,WU Xiaozhi,et al. China?s conventional and unconventional natural gas resource potential,key exploration fields and direction[J]. Natural Gas Geoscience,2018,29(10):1 383–1 397.(in Chinese))
[13] 郑 民,李建忠,吴晓智,等. 我国常规与非常规石油资源潜力及未来重点勘探领域[J]. 海相油气地质,2019,24(2):1–13.(ZHENG Min,LI Jianzhong,WU Xiaozhi,et al. The conventional and unconventional oil resource potential and key exploration fields in China[J]. Marine Origin Petroleum Geology,2019,24(2):1–13.(in Chinese))
[14] LIANG H B,ZHANG L H,ZHAO Y L,et al. Empirical methods of decline-curve analysis for shale gas reservoirs: Review, evaluation, and application[J]. Journal of Natural Gas Science and Engineering,2020,83:103531.
[15] 邹才能,杨 智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979–1 007.(ZOU Caineng,YANG Zhi,ZHU Rukai,et al. Progress of Unconventional Oil and Gas Exploration and Development and Theory and Technology in China[J]. Acta Geologica Sinica,2015,89(6):979–1 007.(in Chinese))
[16] 贾承造. 中国石油工业上游前景与未来理论技术五大挑战[J]. 石油学报,2024,45(1):1–14.(JIA Chengzao. Prospects and five future theoretical and technical challenges of the upstream petroleum industry in China[J]. Acta Petrolei Sinica,2024,45(1):1–14.(in Chinese))
[17] 杨 智,邹才能. 论常规—非常规油气有序“共生富集”——兼论常规—非常规油气地质学理论技术[J]. 地质学报,2022,96(5): 1 635–1 653.(YANG Zhi,ZOU Caineng. Orderly“symbiotic enrichment”of conventional and unconventional oil and gas——discussion on theory and technology of conventional and unconventional petroleum geology[J]. Acta Geologica Sinica,2022,96(5):1 635–1 653.(in Chinese))
[18] 范松梅,沙景华,马玉芳,等. 中国页岩气勘查投入的成本问题研究[J]. 中国矿业,2017,26(12):40–43.(FAN Songmei,SHA Jinghua,MA Yufang,et al. The investment cost of the shale gas exploration in China[J]. China Mining Magazine,2017,26(12):40–43.(in Chinese))
[19] 位云生,贾爱林,何东博,等. 中国页岩气与致密气开发特征与开发技术异同[J]. 天然气工业,2017,37(11):43–52.(WEI Yunsheng,JIA Ailin,HE Dongbo,et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China[J]. Natural Gas Industry,2017,37(11):43–52.(in Chinese))
[20] 邹才能,张国生,杨 智,等. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发,2013,40(4):385–399.(ZOU Caineng,ZHANG Guosheng,YANG Zhi,et al. Geological concepts,characteristics,resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J]. Petroleum Exploration and Development,2013,40(4):385–399.(in Chinese))
[21] 马新华,贾爱林,谭 健,等. 中国致密砂岩气开发工程技术与实践[J]. 石油勘探与开发,2012,39(5):572–579.(MA Xinhua,JIA Ailin,TAN Jian,et al. Tight sand gas development technologies and practices in China[J]. Petroleum Exploration and Development,2012,39(5):572–579.(in Chinese))
[22] 沈金才,董长新,常 振. 涪陵页岩气田气井生产阶段划分及动态特征描述[J]. 天然气勘探与开发,2021,44(1):111–117.(SHEN Jincai,DONG Changxin,CHANG Zhen. Classifying and describing the production stage and dynamic characteristics of gas wells, Fuling shale gas field[J]. Natural Gas Exploration and Development,2021,44(1):111–117.(in Chinese))
[23] HUGHES J D. A reality check on the shale revolution[J]. Nature,2013,494(7437):307–308.
[24] 苏 羽,张 兵,魏 超. 鄂尔多斯盆地临兴气田致密气稳产方式建议[J]. 中国煤层气,2023,20(5):44–46.(SU Yu,ZHANG Bing,WEI Chao. Suggestions on production stabilization of tight gas in Linxing Gas Field of Ordos Basin[J]. China Coalbed Methane,2023,20(5):44–46.(in Chinese))
[25] 李进步,崔越华,黄有根,等. 鄂尔多斯盆地低渗–致密气藏水平井全生命周期开发技术及展望[J]. 石油与天然气地质,2023,44(2):480–494.(LI Jinbu,CUI Yuehua,HUANG Yougen,et al. Technologies and prospect of full-cycle development of low- permeability tight gas reservoirs with horizontal wells,Ordos Basin[J]. Oil and Gas Geology,2023,44(2):480–494.(in Chinese))
[26] 商绍芬,严 鸿,吴 建,等. 四川盆地长宁页岩气井生产特征及开采方式[J]. 天然气勘探与开发,2018,41(4):69–75.(SHANG Shaofen,YAN Hong,WU Jian,et al. Production characteristics and development modes of shale-gas wells,Changning gas field,Sichuan Basin[J]. Natural Gas Exploration and Development,2018,41(4):69–75.(in Chinese))
[27] 郭建林,贾爱林,贾成业,等. 页岩气水平井生产规律[J]. 天然气工业,2019,39(10):53–58.(GUO Jianlin,JIA Ailin,JIA Chengye,et al. Production laws of shale-gas horizontal wells[J]. Natural Gas Industry,2019,39(10):53–58.(in Chinese))
[28] 曹银平,王 勇,蔡默仑. 页岩气井产量递减的影响因素分析[J]. 冶金与材料,2023,43(2):190–192.(CAO Yinping,WANG Yong,CAI Molun. Analysis of factors affecting decreasing production from shale gas wells[J]. Metallurgy and Materials,2023,43(2):190–192. (in Chinese))
[29] 张金发,李 亭,管英柱,等. 致密砂岩气藏低产低效井治理对策及展望[J]. 能源与环保,2022,44(10):115–124.(ZHANG Jinfa,LI Ting,GUAN Yingzhu,et al. Countermeasures and prospects of low production and low efficiency wells in tight sandstone gas reservoir[J]. China Energy and Environmental Protection,2022,44(10):115–124. (in Chinese))
[30] 葛云华,鄢爱民,高永荣,等. 丛式水平井钻井平台规划[J]. 石油勘探与开发,2005,32(5):94–100.(GE Yunhua,YAN Aimin,GAO Yongrong,et al. Drilling pad optimization for oilfield development by cluster horizontal wells[J]. Petroleum Exploration and Development,2005,32(5):94–100.(in Chinese))
[31] 邹才能,杨 智,张国生,等. 常规–非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,2014,41(1):14–25.(ZOU Caineng,YANG Zhi,ZHANG Guosheng,et al. Conventional and unconventional petroleum“orderly accumulation”:Concept and practical significance[J]. Petroleum Exploration and Development,2014,41(1):14–25.(in Chinese))
[32] LIAO S,HU J,ZHANG Y. Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs[J]. Journal of Petroleum Science and Engineering,2022,211:110160.
[33] 王继平,张城玮,李建阳,等. 苏里格气田致密砂岩气藏开发认识与稳产建议[J]. 天然气工业,2021,41(2):100–110.(WANG Jiping,ZHANG Chengwei,LI Jianyang,et al. Tight sandstone gas reservoirs in the Sulige Gas Field:Development understandings and stable- production proposals[J]. Natural Gas Industry,2021,41(2):100– 110.(in Chinese))
[34] 王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质,2014,35(3):425–430.(WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area[J]. Oil and Gas Geology,2014,35(3):425–430.(in Chinese))
[35] 李 艳. 威荣页岩气田压裂工艺对气井返排的影响分析[J]. 中国石油和化工标准与质量,2022,42(10):181–183.(LI Yan. Analysis of the impact of fracturing process on gas well rejection in Weirong shale gas field[J]. China Petroleum and Chemical Standard and Quality,2022,42(10):181–183.(in Chinese))
[36] 郭建成,林伯韬,向建华,等. 四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J]. 石油科学通报,2019,4(3):273–287. (GUO Jiancheng,LIN Botao,XIANG Jianhua,et al. Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan basin after fracturing[J]. Petroleum Science Bulletin,2019,4(3):273–287.(in Chinese))
[37] 刘宗奇,张 朔,谭 臻,等. NP–1井页岩气压裂工艺优化设计研究[J]. 石油化工应用,2021,40(3):28–31.(LIU Zongqi,ZHANG Shuo,TAN Zhen,et al. Study on optimization design of shale gas fracturing technology in well NP–1[J]. Petrochemical Industry Application,2021,40(3):28–31.(in Chinese))
[38] 周长静,张燕明,周少伟,等. 苏里格致密砂岩气藏水平井体积压裂技术研究与试验[J]. 钻采工艺,2015,38(1):44–47.(ZHOU Changjing,ZHANG Yanming,ZHOU Shaowei,et al. Study and experiment on volumetric fracturing technology of horizontal well for sulige tight sandstone gas reservoir[J]. Drilling and Production Technology,2015,38(1):44–47.(in Chinese))
[39] CHEN H,CONG T,YANG W,et al. Progress in electrical energy storage system:A critical review[J]. Progress in natural science,2009,19(3):291–312.
[40] 姚雪青. 常州金坛盐穴压缩空气储能电站:赋能地下盐穴 助力高效用能[N/OL]. 人民日报,2023–02–06. http://js.people.com.cn/n2/ 2023/0206/c360301–40289843.html.(YAO Xueqing. Changzhou Jintan salt cavern compressed air energy storage power station:empowering underground salt caverns to help efficient energy use[N/OL]. People?s Daily,2023–02–06. http://js.people.com.cn/n2/2023/0206/c360301– 40289843.html.(in Chinese))
[41] 司 光,林好宾,丁丹红,等. 页岩气水平井工厂化作业造价确定与控制对策[J]. 天然气工业,2013,33(12):163–167.(SI Guang,LIN Haobin,DING Danhong,et al. Cost determination and control of factory-like operations of shale gas horizontal wells[J]. Natural Gas Industry,2013,33(12):163–167.(in Chinese))
[42] 贾爱林,程立华,冀 光,等. 长庆气区开发技术与稳产技术对策[C]// 第31届全国天然气学术年会(2019)论文集(02气藏开发). [S. l.]:[s. n.],2019:10.(JIA Ailin,CHENG Lihua,JI Guang,et al. The development technologies and the technical countermeasures of stable production of Changqin gas field[C]// Proceedings of the 31st National Annual Natural Gas Conference(2019)(02 Gas Reservoir Development). [S. l.]:[s. n.],2019:10.(in Chinese))
[43] 马新华,张晓伟,熊 伟,等. 中国页岩气发展前景及挑战[J]. 石油科学通报,2023,8(4):491–501.(MA Xinhua,ZHANG Xiaowei,XIONG Wei,et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin,2023,8(4):491–501.(in Chinese))
[44] 李国欣,雷征东,董伟宏,等. 中国石油非常规油气开发进展、挑战与展望[J]. 中国石油勘探,2022,27(1):1–11.(LI Guoxin,LEI Zhengdong,DONG Weihong,et al. Progress, challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration,2022,27(1):1–11.(in Chinese))
[45] 常州市人民政府. 世界首个非补燃压缩空气储能电站在常州金坛正式投产[N/OL]. https://www.changzhou.gov.cn/ns_news/661165354138216. (Changzhou Municipal People?s Government. The world?s first non- complementary compressed air energy storage plant is officially put into operation in Jintan,Changzhou[N/OL]. https://www.changzhou. gov.cn/ns_news/661165354138216.(in Chinese))
[46] 江雨濛,周 昕,郝越翔,等. 基于微地震监测与地质信息的页岩储层压裂效果评价[C]// 2023国际石油石化技术会议论文集II. [S. l.]:[s. n.],2023:8.(JIANG Yumeng,ZHOU Xin,HAO Yuexiang,et al. Evaluation of Shale Reservoir Fracturing Effect based on Microseismic Monitoring and Geological Information[C]// 2023 International Petroleum and Petrochemical Technology Conference Proceedings II. [S. l.]:[s. n.],2023:8.(in Chinese))
[47] 朱小祥,裴顺强,贺姗姗,等. 中国风能太阳能资源年景公报(2023)[R]. 北京:中国气象局风能太阳能中心,2024.(ZHU Xiaoxiang,PEI Shunqiang,HE Shanshan,et al. China?s wind and solar energy resources annual bulletin(2023)[R]. Beijing:Wind and Solar Energy Centre of China Meteorological Administration,2024.(in Chinese))
[48] 国家能源局. 国家能源局发布2023年全国电力工业统计数据[N/OL]. https://www.nea.gov.cn/2024-01/26/c_1310762246.htm.(National Energy Administration. NEA releases 2023 national power industry statistics[N/OL]. https://www.nea.gov.cn/2024-01/26/c_1310762246. htm.(in Chinese))
[49] 苏 南. 规划内项目有望全部核准,未来四年开建规模空前——特高压建设迎来新一轮提速期[N/OL]. 中国能源报. 2022–01–10. http://www.chinapower.com.cn/xw/gnxw/20220117/128522.html.(SU Nan. All planned projects are expected to receive approval, with unprecedented construction scale over the next four years—ultra-high voltage grid development enters a new phase of accelerated expansion.[N/OL]. China Energy News. 2022–01–10. http://www. chinapower.com.cn/xw/gnxw/ 20220117/128522.html.(in Chinese))
[50] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,2016,43(2):166–178.(ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China: characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development,2016,43(2):166–178.(in Chinese))
[51] 薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1 075–1 081.(XUE Huaqing,ZHOU Shangwen,JIANG Yali,et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development,2018,45(6):1 075–1 081.(in Chinese))
[52] MA T,YANG C,CHEN P,et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016,28:204–214.
[53] LIN H,SUN X,YUAN Y,et al. Experimental investigation on the dynamic volume changes of varied-size pores during shale hydration[J]. Journal of Natural Gas Science and Engineering,2022,101:104506.
[54] ROSHAN H,EHSANI S,MARJO C E,et al. Mechanisms of water adsorption into partially saturated fractured shales:An experimental study[J]. Fuel,2015,159:628–637.
[55] 冒海军,郭印同,王光进,等. 黏土矿物组构对水化作用影响评价[J]. 岩土力学,2010,31(9):2 723–2 728.(MAO Haijun,GUO Yintong,WANG Guangjin,et al. Evaluation of impact of clay mineral fabrics on hydration process[J] Rock and Soil Mechanics,2010,31(9): 2 723–2 728.(in Chinese))
[56] 曾凡辉,张 蔷,陈斯瑜,等. 水化作用下页岩微观孔隙结构的动态表征——以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业,2020,40(10):66–75.(ZENG Fanhui,ZHANG Qiang,CHEN Siyu,et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration:A case study of Longmaxi Formation shale in the Changning area of the Sichuan Basin[J]. Natural Gas Industry,2020,40(10):66–75.(in Chinese))
[57] 郑晓卿,刘 建,卞 康,等. 鄂西北页岩饱水软化微观机制与力学特性研究[J]. 岩土力学,2017,38(7):2 022–2 028.(ZHENG Xiaoqing,LIU Jian,BIAN Kang,et al. Softening micro-mechanism and mechanical properties of water-saturated shale in Northwestern Hubei[J]. Rock and Soil Mechanics,2017,38(7):2 022–2 028.(in Chinese))
[58] COLBACK P S B,WIID B L. The influence of moisture content on the compressive strength of rocks[J]. Geophysics,1965:65–83.
[59] HAWKINS A B,MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1992,25(2):115–130.
[60] SONG J,XIANG D,ZHAO S,et al. Shale softening degree and rate induced by fracturing fluid under THMC coupling condition[J]. Journal of Natural Gas Science and Engineering,2021,96:104294.
[61] 杨 海,石孝志,尹丛彬,等. 不同类型液体水化作用下海相页岩巴西劈裂破坏特征[J]. 天然气工业,2020,40(5):72–80.(YANG Hai,SHI Xiaozhi,YIN Congbin,et al. Brazilian tensile failure characteristics of marine shale under the hydration effect of different fluids[J]. Natural Gas Industry,2020,40(5):72–80.(in Chinese))
[62] 葛修润,蒋 宇,卢允德,等. 周期荷载作用下岩石疲劳变形特性试验研究[J]. 岩石力学与工程学报,2003(10):1 581–1 585.(GE Xiurun,JIANG Yu,LU Yunde,et al. Testing study on fatigue deformation law of rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2003(10):1 581–1 585.(in Chinese))
[63] 葛修润,任建喜,蒲毅彬,等. 岩石疲劳损伤扩展规律CT细观分析初探[J]. 岩土工程学报,2001,23(2):191–195.(GE Xiurun,REN Jianxi,PU Yibin,et al. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock[J]. Chinese Journal of Geotechnical Engineering,2001,23(2):191–195.(in Chinese))
[64] MULLER-SALZBURG L,GE X. Studies on the mechanical behaviour (deformation behaviour) of jointed rock masses under cyclic load[C]// ISRM Congress. [S. l.]:[s. n.],1983:ISRM– 5CONGRESS–1983–008.
[65] 葛修润. 周期荷载下岩石大型三轴试件的变形和强度特性研究[J]. 岩土力学,1987,18(2):11–19.(GE Xiurun. Deformation and strength characteristics of large triaxial specimens of rock under cyclic loading[J]. Rock and Soil Mechanics,1987,18(2):11–19.(in Chinese))
[66] 魏元龙,杨春和,郭印同,等. 单轴循环荷载下含天然裂隙脆性页岩变形及破裂特征试验研究[J]. 岩土力学,2015,36(6):1 649– 1 658.(WEI Yuanlong,YANG Chunhe,GUO Yintong,et al. Experimental investigation on deformation and fracture characteristics of brittle shale with natural cracks under uniaxial cyclic loading[J]. Rock and Soil Mechanics,2015,36(6):1 649–1 658.(in Chinese))
[67] 汪 泓,杨天鸿,刘洪磊,等. 循环载荷下干燥及饱和砂岩的变形及声发射特征[J]. 东北大学学报:自然科学版,2016,37(8): 1 161–1 165.(WANG Hong,YANG Tianhong,LIU Honglei,et al. Deformation and acoustic emission characteristics of dry and saturated sand under cyclic loading and unloading process[J]. Journal of Northeastern University:Natural Science,2016,37(8):1 161–1 165. (in Chinese))
[68] 徐守余,王 宁. 油层出砂机制研究综述[J]. 新疆地质,2007,(3):283–286.(XU Shouyu,WANG Ning. Research on reservior sand production mechanism[J]. Xinjiang Geology,2007,(3):283–286.(in Chinese))
[69] 陈冬林,张保英,谭明文,等. 支撑剂回流控制技术的新发展[J]. 天然气工业,2006,(1):101–103.(CHEN Donglin,ZHANG Baoying,TAN Mingwen,et al. New advancement of proppant backflow control technology[J]. Natural Gas Industry,2006,(1):101–103.(in Chinese))
[70] 汪周华,郭 平,孙 雷,等. 油气藏出砂研究现状及其发展趋势[J]. 特种油气藏,2005,(4):5–10.(WANG Zhouhua,GUO Ping,SUN Lei,et al. Reservoir sand production study and its development tendency[J] Special Oil and Gas Reservoirs,2005,(4):5–10.(in Chinese))
[71] 宋军正,郭建春. 压裂气井出砂机理研究[J]. 钻采工艺,2005,(2):20–21.(SONG Junzheng,GUO Jianchun. Mechanism study on sand production of fracturing gas well[J]. Drilling and Production Technology,2005,(2):20–21.(in Chinese))
[72] 张宪游,刘 丽. 防砂进展及新工艺展望[J]. 西部探矿工程,2011,23(6):38–39.(ZHANG Xianyou,LIU Li. Sand control progress and new process outlook[J] West-China Exploration Engineering,2011,23(6):38–39.(in Chinese))
[73] BARNHART W D,BENZ H M,HAYES G P,et al. Seismological and geodetic constraints on the 2011 Mw 5.3 Trinidad,Colorado earthquake and induced deformation in the Raton Basin[J]. Journal of Geophysical Research:Solid Earth,2014,119(10):7 923–7 933.
[74] 王向腾,李志伟,包 丰,等. 深地下工程高压注水诱发地震研究进展[J]. 地球物理学进展,2016,31(1):482–490.(WANG Xiangteng,LI Zhiwei,BAO Feng,et al. Progress in studies of deep injection- induced earthquake[J]. Progress in Geophysics,2016,31(1):482–490.(in Chinese))
[75] 张建勇,崔振东,周 健,等. 流体注入工程诱发断层活化的风险评估方法[J]. 天然气工业,2018,38(8):33–40.(ZHANG Jianyong,CUI Zhendong,ZHOU Jian,et al. Risk assessment methods for fault reactivation induced by fluid injection[J]. Natural Gas Industry,2018,38(8):33–40.(in Chinese))
[76] 雷兴林,苏金蓉,王志伟. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联[J]. 中国科学:地球科学,2020,50(11):1 505–1 532.(LEI Xinglin,SUN Jinrong,WANG Zhiwei. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Scientia Sinica(Terrae),2020,50(11):1 505–1 532.(in Chinese))
[77] 陈朝伟,项德贵,张丰收,等. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略[J]. 石油科学通报,2019,4(4):364–377.(CHEN Zhaowei,XIANG Degui,ZHANG Fengshou,et al. Fault slip and casing deformation caused by hydraulic fracturing in Changning-Weiyuan Blocks,Sichuan:Mechanism and prevention strategy[J]. Petroleum Science Bulletin,2019,4(4):364–377.(in Chinese))
[78] 高德利,刘 奎. 页岩气井井筒完整性若干研究进展[J]. 石油与天然气地质,2019,40(3):602–615.(GAO Deli,LIU Kui. Progresses in shale gas well integrity research[J]. Oil and Gas Geology,2019,40(3):602–615.(in Chinese))
[79] 李留伟,王高成,练章华,等. 页岩气水平井生产套管变形机理及工程应对方案——以昭通国家级页岩气示范区黄金坝区块为例[J]. 天然气工业,2017,37(11):91–99.(LI Liuwei,WANG Gaocheng,LIAN Zhanghua,et al. Deformation mechanism of horizontal shale gas well production casing and its engineering solution:A case study on the Huangjinba Block of the Zhaotong National Shale Gas Demonstration Zone[J]. Natural Gas Industry,2017,37(11):91–99. (in Chinese))
[80] YANG H,WANG L,HUANG G,et al. Effects of compressive cyclic loading on the fatigue properties of oil-well cement slurries serving in deep downhole environments[J]. Construction and Building Materials,2024,428:136360.
[81] 王 宇,翟 成,余 旭,等. 高温作用下五峰组–龙马溪组页岩动力学特征及损伤演化规律研究[J]. 岩石力学与工程学报,2023,42(5):1 110–1 123.(WANG Yu,ZHAI Cheng,YU Xu,et al. Dynamic characteristics and damage evolution law of Wufeng formation-Longmaxi formation shale under high temperature effects[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1 110–1 123.(in Chinese))
[82] 赵 静,刘增琪,康志勤,等. 原位开采状态下油页岩渗透特性演化规律研究[J]. 岩石力学与工程学报,2021,40(5):892–901. (ZHAO Jing,LIU Zengqi,KANG Zhiqin,et al. Study on evolution of permeability characteristics of oil shale under in-situ exploitation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):892–901.(in Chinese))
|
|
|
|