|
|
|
| Deterioration mechanisms of conglomerate under dry-wet and freeze-thaw cycles: A case study of the Yulin Grottoes |
| ZHANG Huihui1,2, WANG Yanwu2, GUO Qinglin2, WANG Xuezhi2, TANG Chun?an1, TANG Shibin1 |
| (1. School of Civil Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; 2. Conservation Institute, Dunhuang Academy, Dunhuang, Gansu 736200, China) |
|
|
|
|
Abstract The Dunhuang Grottoes represent a significant segment of China?s grotto temples; however, the cliff faces are highly vulnerable to weathering due to the wet-dry and freeze-thaw cycles, posing a serious threat to their long-term preservation. To investigate the deterioration mechanisms of the conglomerate rock in the Dunhuang Grottoes under these conditions, this study conducted laboratory tests simulating wet-dry and freeze-thaw cycles on conglomerate samples, utilizing regional environmental monitoring data as a reference. The findings reveal that: (1) Wet-dry and freeze-thaw cycles significantly reduce the mass, P-wave velocity, and uniaxial compressive strength of the conglomerate samples while markedly increasing their permeability; (2) Water plays a critical role in the deterioration process of the conglomerate, particularly during freeze-thaw cycles involving moisture, where the rate of deterioration accelerates and is positively correlated with water content. Compared to the fresh, dry samples, the uniaxial compressive strength decreased by 13% in the wet-dry cycle group, 12% in the dry freeze-thaw group, 36% in the saturated freeze-thaw group, and 25% in the natural freeze-thaw group; (3) Microscopic analysis indicates that the degradation of the conglomerate under wet-dry and freeze-thaw cycles results from significant changes in microstructure, including surface roughening of micro-mineral particles, structural loosening, weakening of cementation, and the formation of microcracks. These results provide crucial theoretical support for the protection of the Dunhuang Grottoes against weathering.
|
|
|
|
|
|
[1] AGNEW N,JINSHI F. China?s buddhist treasures at Dunhuang[J]. Scientific American,1997,277(1):27–40.
[2] 赵晓星. 莫高窟之外的敦煌石窟[M]. 敦煌:敦煌文艺出版社,2017:1–3.(ZHAO Xiaoxing. Dunhuang grottoes other than Mogao Grottoes[M]. Dunhuang:Dunhuang Literary Press,2017:1–3.(in Chinese))
[3] FRIESEN O,DASHTGARD S,MILLER J,et al. Permeability heterogeneity in bioturbated sediments and implications for waterfooding of tight-oil reservoirs,Cardium Formation,Pembina Field,Alberta,Canada[J]. Marine and Petroleum Geology,2017,82:371–387.
[4] KREZSEK C,FILIPESCU S,SILYE L,et al. Miocene facies associations and sedimentary evolution of the Southern Transylvanian Basin (Romania):Implications for hydrocarbon exploration[J]. Marine and Petroleum Geology,2009,27(1):191–214.
[5] MAHMIC O,DYPVIK H,HAMMER E. Diagenetic influence on reservoir quality evolution,examples from Triassic conglomerates/ arenites in the Edvard Grieg field,Norwegian North Sea[J]. Marine and Petroleum Geology,2018,93:247–271.
[6] HAO Z G,FEI H C,HAO Q Q,et al. The world’s largest conglomerate type oilfield has been discovered in the Junggar Basin of China[J]. Acta Geologica Sinica,2018,92:394–395.
[7] SHEN T J,LIN B. A novel machine learning framework for efficient calibration of complex DEM model:A case study of a conglomerate sample[J]. Engineering Fracture Mechanics,2023,279:109044.
[8] ZHANG H H,GUO Q L,WANG Y W,et al. Cross-scale analysis on the mechanical behavior of the conglomerate of Yulin Grottoes in China[J]. International Journal of Rock Mechanics and Mining Sciences,2024,178:105750.
[9] AKRAM M S,SHARROCK G B,MITRA R. Investigating mechanics of conglomeratic rocks:influence of clast size distribution, scale and properties of clast and interparticle cement[J]. Bulletin of Engineering Geology and the Environment,2019,78(4):2 769–2 788.
[10] WANG J B,GE H K,LIU J T,et al. Effects of gravel size and content on the mechanical properties of conglomerate[J]. Rock Mechanics and Rock Engineering,2022,55(4):2 493–2 502.
[11] LI J R,DUAN K,MENG H,et al. On the mechanical properties and failure mechanism of conglomerate specimens subjected to triaxial compression tests[J]. Rock Mechanics and Rock Engineering,2023,56(2):973–995.
[12] SKEJI´C A,GAVRI´C D,JURIˇSI´C M,et al. Experimental and numerical analysis of axially loaded bored piles socketed in a conglomerate rock mass[J]. Rock Mechanics Rock Engineering,2022,55(10):6 339–6 365.
[13] 魏 俊,廖华林,王华健,等. 真三轴条件下砾岩力学特性试验[J].中国石油大学学报:自然科学版,2022,46(5):81–89.(WEI Jun,LIAO Hualin,WANG Huejian,et al. Experiment on mechanical properties of conglomerate rocks under true triaxial loading[J]. Journal of China University of Petroleum:Natural Science,2022,46(5):81–89.(in Chinese))
[14] CHEN B,JI J Q,LIN J Q,et al. Experimental and numerical investigation of characteristics of highly heterogeneous rock mechanical responses in tight sandy conglomerate reservoir rock under triaxial compression[J]. Frontiers in Earth Science,2021,(9):735208.
[15] 张兆鹏,张士诚,石善志,等. 基于纳米压痕实验和均匀化方法评价砾岩多尺度力学性质——以玛湖凹陷南斜坡致密砾岩储层为例[J]. 岩石力学与工程学报,2022,41(5):926–940.(ZHANG Zhaopeng,ZHANG Shicheng,SHI Shanzhi,et al. Evaluation of multi-scale mechanical properties of conglomerate using nanoindentation and homogenization methods:a case study on tight conglomerate reservoirs in the southern slope of Mahu sag[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):926–940.(in Chinese))
[16] JU Y,CHEN J L,WANG Y L,et al. Numerical analysis of hydrofracturing behaviors and mechanisms of heterogeneous reservoir glutenite,using the continuum-based discrete element method while considering hydromechanical coupling and leak-off effects. Journal of geophysical research[J]. Solid Earth,2018,123(5):3 621–3 644.
[17] YANG Z F,CHIKAOSA T. Assessing the relative stability of the Mogao Grottoes using a rock mass quality classification approach[M]. [S. l.]:Ancient Underground Opening and Preservation,2016:261–268.
[18] 石玉成,王旭东,秋仁东,等. 敦煌莫高窟崖体锚索加固技术钻孔振动效应测试分析[J]. 世界地震工程,2007,(4):7–12.(SHI Yucheng,WANG Xudong,QIU Rendong,et al. Vibration effect testing and analysis of anchor wire reinforcement of cliff rock mass of Mogao Grotto[J]. World Information on Earthquake Engineering,2007,(4):7–12.(in Chinese))
[19] LIU H L,WANG X D,GUO Q L. Field testing study on the rainfall thresholds and prone areas of sandstone slope erosion at Mogao Grottoes,Dunhuang[J]. Environmental Monitoring and Assessment,2019,191(12):755.
[20] 郭青林,王旭东,薛 平,等. 敦煌莫高窟底层洞窟岩体内水汽与盐分空间分布及其关系研究[J]. 岩石力学与工程学报,2009,28(增2):3 769–3 775.(GUO Qinglin,WANG Xudong,XUE Ping,et al. Research on spatial distribution and relations of salinity and moisture content inside rock mass of low-layer caves in Dunhuang Mogao Grottoes[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3 769–3 775.(in Chinese))
[21] LI H S,WANG W F,ZHANG H T,et al. Water in the Mogao Grottoes,China:where it comes from and how it is driven[J]. Journal of Arid Land,2015,7(1):37–45.
[22] 王旭东,张明泉,张虎元,等. 敦煌莫高窟洞窟围岩的工程特性[J].岩石力学与工程学报,2000,19(6):756–761.(WANG Xudong,ZHANG Mingquan,ZHANG Huyuan,et al. Engineering properties of surrounding rock of Mogao grottoes at Dunhuang[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(6):756–761.(in Chinese))
[23] 李最雄. 敦煌石窟保护工作六十年[J]. 敦煌研究,2004,(3):10–26.(LI Zuixiong. Sixty years on the conservation of the Dunhuang Grottoes[J]. Dunhuang Research,2004,(3):10–26.(in Chinese))
[24] GUO Q Q,WANG X D,LI Z X,et al. Damage and conservation of the high cliff on the Northern area of Dunhuang Mogao Grottoes,China[J]. Landslides,2009,6(2):89–100.
[25] 崔 凯,顾 鑫,吴国鹏,等. 不同条件下贺兰口岩画载体变质砂岩干湿损伤特征与机制研究[J]. 岩石力学与工程学报,2021,40(6):1 236–1 247.(CUI Kai,GU Xin,WU Guopeng,et al. Dry-wet damage characteristics and mechanism of metamorphic sandstone carrying Helan mouth's rock paintings under different conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1 236– 1 247.(in Chinese))
[26] 朱建波,付乙梓,李 瑞,等. 干湿循环与动态压缩耦合作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报,2023,42(增1):3 558–3 566.(ZHU Jianbo,FU Yixin,LI Rui,et al. Experimental study on mechanical characteristics of sandstone under drying wetting cycles and dynamic compression[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Supp.1):3 558–3 566.(in Chinese))
[27] AN R,KONG L W,ZHANG X W,et al. Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro-computed tomography[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(3):851–860.
[28] 刘晓颖,郭青林,张 博,等. 降雪、温差作用下大尺寸砂岩风化模拟试验研究[J]. 岩石力学与工程学报,2024,43(6):1 519–1 534. (LIU Xiaoying,GUO Qinglin,ZHAN Bo,et al. Simulation experiment study on large-size sandstone weathering under coupling effect of snow and temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(6):1 519–1 534.(in Chinese))
[29] 宋彦琦,马宏发,刘济琛,等. 冻融灰岩单轴声发射损伤特性试验研究[J]. 岩石力学与工程学报,2022,41(增1):2 603–2 614.(SONG Yanqi,MA Hongfa,LIU Jichen,et al. Experimental investigation on the damage characteristics of freeze-thaw limestone by the uniaxial compression and acoustic emission monitoring tests[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Supp.1):2 603–2 614. (in Chinese))
[30] 贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[博士学位论文][D]. 武汉:中国地质大学,2016.(JIA Hailiang. Theoretical damage models of porous rocks and hard jointed rocks subjected to frost action and further experimental verifications[Ph. D. Thesis][D]. Wuhan:China University of Geosciences,2016.(in Chinese))
[31] 贾 蓬,毛松泽,孙占阳,等. 冻融损伤砂岩的能量演化及分段本构模型[J]. 中南大学学报:自然科学版,2023,54(3):908–919.(JIA Peng,MAO Songze,SUN Zhanyang,et al. Energy evolution and piecewise constitutive model of freeze-thaw damaged sandstone[J]. Journal of Central South University:Science and Technology,2023,54(3):908–919.(in Chinese))
[32] 王旭东,张虎元,郭青林,等. 敦煌莫高窟崖体风化特征及保护对策[J]. 岩石力学与工程学报,2009,28(5):1 055–1 063.(WANG Xudong,ZHANG Huyuan,GUO Qinglin,et al. Weathering characterization and conservation treatment of cliff at Mogao Grottoes[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(5):1 055–1 063.(in Chinese))
[33] 叶 飞,谌文武,梁行洲,等. 敦煌莫高窟玉门组砂砾岩风化特征研究[J]. 工程地质学报,2016,24(6):1 286–1 293.(YE Fei,CHEN Wenwu,LIANG Xingzhou,et al. Study on the weathering characteristics of the Yumen glutenite in the Mogao Grottoes in Dunhuang[J]. Journal of Engineering Geology,2016,24(6):1 286–1 293.(in Chinese))
[34] 王彦武,王旭东,朱 毓,等. 甘肃瓜州榆林窟东崖体水分分布特征研究[J]. 兰州大学学报:自然科学版,2021,57(2):238–243.(WANG Yanwu,WANG Xudong,ZHU Yu,et al. The moisture characteristics of surrounding rocks in the eastern Cliff of the Yulin Grottoes,Guazhou,Gansu Province[J]. Journal of Lanzhou University:Natural Science,2021,57(2):238–243.(in Chinese))
[35] 王彦武. 甘肃典型石窟渗水机制与防治技术研究[博士学位论文][D]. 兰州:兰州大学,2024.(WANG Yanwu. Study on mechanism and prevention technology of water seepage of typical grottoes in gansu provincet[Ph. D. Thesis][D]. Lanzhou:Lanzhou University,2024.(in Chinese))
[36] 郭青林,薛 平,侯文芳,等. 安西榆林窟环境特征[J]. 敦煌研究,2002,(4):102–109.(GUO Qinglin,XUE Ping,HOU Wenfang,et al. Environmental features of the Anxi Yulin Grottoes[J]. Dunhuang Research,2002,(4):102–109.(in Chinese))
[37] 中华人民共和国行业标准编写组. SL/T 264—2020 水利水电工程岩石试验规程[S]. 北京:中国水利水电出版社,2020.(The Professional Standards Compilation Group of People?s Republic of China. SL/T 264—2020 Code for rock tests in water and hydropower projects[S]. Beijing:China Water Power Press,2020.(in Chinese))
[38] 张国凯,李海波,夏 祥,等. 岩石波速与损伤演化规律研究[J]. 岩石力学与工程学报,2015,34(11):2 270–2 277.(ZHANG Guokai,LI Haibo,XIA Xiang,et al. Wave velocity and damage development of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2 270–2 277.(in Chinese))
[39] 郑木莲. 多孔混凝土的渗透系数及测试方法[J]. 交通运输工程学报,2006,(4):41–46.(ZHENG Mulian. Permeability coefficient and test method of porous concrete[J]. Journal of Traffic and Transportation Engineering,2006,(4):41–46.(in Chinese))
[40] CHEN W W,LIAO R X,WANG N,et al. Effects of experimental frost-thaw cycles on sandstones with different weathering degrees:a case from the Bingling Temple Grottoes,China[J]. Bulletin of Engineering Geology and the Environment,2019,78(7):5 311–5 326. |
|
|
|