|
|
|
| Thermal infrared pixel-level underground temperature prediction method for deeply buried long tunnels |
| LIU Zhongbo1, 2, ZHU Yong1, 2, ZHOU Hui1, 2, ZHANG Chuanqing1, 2, WANG Dong3 |
(1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. China Railway Eryuan Engineering Group Co., Ltd., Chengdu, Sichuan 610031, China) |
|
|
|
Abstract To enhance the spatial accuracy of underground temperature (UGT) prediction for deeply buried long tunnels (DBLT) in complex geomorphic environments, a pixel-level UGT prediction methodology known as the Virtual Temperature Column Method is proposed, which utilizes thermal infrared (TIR) remote sensing data. This innovative approach incorporates multi-year surface radiation data collected from TIR satellites as boundary conditions for surface temperature, leveraging a limited dataset of temperature measurements from boreholes. Key parameters such as the annual average surface temperature (AAST),the heat flux value in the thermostat layer (THF), and the thermal conductivity of the rock (RTC) are obtained through surface temperature inversion, theoretical calculations, and indoor experiments, respectively. These parameters facilitate high-resolution pixel-level predictions of UGT in DBLT. To validate the efficacy of this methodology, a project in the Qinghai—Tibet Plateau region is used as an example to forecast the UGT of deep tunnel strata. Additionally, a gray correlation analysis is conducted to identify the key factors influencing the sensitivity of UGT predictions. The results demonstrate that the methodology improves the spatial accuracy of UGT predictions from a kilometer scale to a 30-meter scale, with prediction errors between the predicted and measured values controlled within 6%, indicating high spatial accuracy. The three key parameters affecting the sensitivity of the UGT prediction are AAST, THF, and RTC, with their correlation coefficients being 1, 0.99, and 0.489, respectively, indicating the hierarchy of sensitivity as follows: AAST>THF>RTC. This methodology effectively addresses the challenges posed by scarce borehole temperature measurement data and the low spatial accuracy of UGT predictions in complex geomorphic environments, providing a valuable reference for accurate UGT prediction in deep-buried tunneling projects in regions of frequent geothermal activity in China.
|
|
|
|
|
|
[1] 中华人民共和国行业标准编写组. NBT 11092—2023 水电工程深埋隧洞技术规范[S]. 北京:中国水利水电出版社,2023.(The Professional Standards Compilation Group of People?s Republic of China. NBT 11092—2023 Technical code for deep tunnels of hydropower projects[S]. Beijing:China Water and Power Press,2023.(in Chinese))
[2] 中华人民共和国行业标准编写组. DLT5854—2022 水电水利工程深埋地下洞室开挖施工规范[S]. 北京:中国电力出版社,2022.(The Professional Standards Compilation Group of People?s Republic of China. DLT5854—2022 Excavation construction code for deep buried underground caverns of hydropower and water resources engineering[S]. Beijing:China Electric Power Press,2022.(in Chinese))
[3] 中华人民共和国行业标准编写组. TB10003—2016 铁路隧道设计规范[S]. 北京:中国铁道出版社,2016.(The Professional Standards Compilation Group of People?s Republic of China. TB10003—2016 Code for design of railway tunnel[S]. Beijing:China Railway Publishing House,2016.(in Chinese))
[4] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2 803–2 813.(HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2 803–2 813.(in Chinese))
[5] ZENG Y H,TAO L L,YE X Q,et al. Temperature reduction for extra-long railway tunnel with high geotemperature by longitudinal ventilation[J]. Tunnelling and Underground Space Technology,2020,99(C):103381.
[6] LU M,YU L,WANG M N,et al. A new approach in calculation of heat release during high geothermal tunnels construction considering ventilation time effect[J]. International Journal of Thermal Sciences,2023,194:108589.
[7] 严 健,何 川,汪 波,等. 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学,2019,40(4):1 543–1 550.(YAN Jian,HE Chuan,WANG Bo,et al. Influence of high geotemperature on rockburst occurrence in tunnel[J]. Rock and Soil Mechanics,2019,40(4):1 543–1 550.(in Chinese))
[8] 常兴旺. 高黎贡山越岭段地热成因机制与隧道热害风险量化评价体系研究[博士学位论文][D]. 成都:成都理工大学,2022.(CHANG Xingwang. Geothermal genetic mechanism of the Gaoligong Mountain trans-ridge section and the quantitative evaluation system for tunnel thermal hazard risk[Ph. D. Thesis][D]. Chengdu:Chengdu University of Technology,2022.(in Chinese))
[9] HU Y P,WANG M N,WANG Q L,et al. Field test of thermal environment and thermal adaptation of workers in high geothermal tunnel[J]. Building and Environment,2019,160:106174.
[10] 郭平业,卜墨华,张 鹏,等. 高地温隧道灾变机制与灾害防控研究进展[J]. 岩石力学与工程学报,2023,42(7):1 561–1 581.(GUO Pingye,BU Mohua,ZHANG Peng,et al. Review on catastrophe mechanism and disaster countermeasure of high geotemperature tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(7):1 561–1 581.(in Chinese))
[11] HU Y P,WANG M N,WANG Z L,et al. Mechanical behavior and constitutive model of shotcrete–rock interface subjected to heat damage and variable temperature curing conditions[J]. Construction and Building Materials,2020,263:120171.
[12] 陈庆发,胡华瑞,钟琼英,等. 深井矿山巷道围岩调热圈半径测定方法比较研究[J]. 矿业研究与开发,2016,36(11):94–98.(CHEN Qingfa,HU Huarui,ZHONG Qiongying,et al. Comparison on the determination methods for radius of heat-adjusting zone in surrounding rock at deep roadway[J]. Mining Research and Development,2016,36(11):94–98.(in Chinese))
[13] 李 坚,马文德,吴正刚,等. 高寒艰险山区和复杂地质条件的铁路物探[J]. 铁道工程学报,2015,32(8):5–11.(LI Jian,MA Wende,WU Zhenggang,et al. Railway geophysical prospecting of alpine mountainous areas with complex geological condition[J]. Journal of Railway Engineering Society,2015,32(8):5–11.(in Chinese))
[14] 赵志宏,徐浩然,刘 峰,等. 川藏铁路折多山段隧道温度场与热害初步预测[J]. 现代地质,2021,35(1):180–187.(ZHAO Zhihong,XU Haoran,LIU Feng,et al. Preliminary prediction of temperature field and thermal damage in Zheduoshan region along Sichuan-Tibet railway[J]. Geoscience,2021,35(1):180–187.(in Chinese))
[15] 胡 政,郭维祥,王平易,等. 高地温隧道地温特征及预测研究[J]. 地下空间与工程学报,2021,17(6):1 906–1 915.(HU Zheng,GUO Weixiang,WANG Pingyi,et al. Study on ground temperature characteristics and prediction of high ground temperature tunnel[J]. Chinese Journal of Underground Space and Engineering,2021,17(6):1 906–1 915.(in Chinese))
[16] 谭静强,琚宜文,侯泉林,等. 淮北煤田宿临矿区现今地温场分布特征及其影响因素[J]. 地球物理学报,2009,52(3):732–739.(TAN Jingqiang,JU Yiwen,HOU Quanlin,et al. Distribution characteristics and influence factors of present geo-temperature field in Su-Lin mine area,Huaibei coalfield[J]. Chinese Journal of Geophysics,2009,52(3):732–739.(in Chinese))
[17] 尹士清. 向莆铁路长大隧道群地温预测和测试分析[J]. 铁道工程学报,2015,32(4):91–95.(YIN Shiqing. Analysis and prediction of geothermal test for long tunnel group on Xiangtang-Putian railway[J]. Journal of Railway Engineering Society,2015,32(4):91–95.(in Chinese))
[18] 于 丽,孙 源,王明年,等. 考虑通风与围岩条件的寒区隧道温度场模型及作用规律研究[J]. 隧道建设(中英文),2019,39(增2):85–91.(YU Li,SUN Yuan,WANG Mingnian,et al. Model and action law of temperature field of tunnel in cold region considering ventilation and surrounding rock condition[J]. Tunnel Construction,2019,39(Supp.2):85–91.(in Chinese))
[19] 伯 音,王 聪,冯彦芳,等. 基于冻土热传导方程解析解的相似准则研究[J]. 长江科学院院报,2025,42(5):184–191.(BO Yin,WANG Cong,FENG Yanfang,et al. Similarity criterion based on the analytical solution of heat conduction equation on frozen soil[J]. Journal of Changjiang River Scientific Research Institute,2025,42(5):184–191.(in Chinese))
[20] 夏才初,张国柱,肖素光. 考虑衬砌和隔热层的寒区隧道温度场解析解[J]. 岩石力学与工程学报,2010,29(9):1 767–1 773.(XIA Caichu,ZHANG Guozhu,XIAO Suguang. Analytical solution to temperature fields of tunnel in cold region considering lining and insulation layer[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(9):1 767–1 773.(in Chinese))
[21] 段四波,茹 晨,李召良,等. Landsat卫星热红外数据地表温度遥感反演研究进展[J]. 遥感学报,2021,25(8):1 591–1 617.(DUAN Sibo,RU Chen,LI Zhaoliang,et al. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data[J]. National Remote Sensing Bulletin,2021,25(8):1 591–1 617.(in Chinese))
[22] 叶 甘. 基于Landsat影像的地热勘探方法[硕士学位论文][D]. 荆州:长江大学,2023.(YE Gan. Geothermal exploration method based on Landsat images[M. S. Thesis][D]. Jingzhou:Yangtze University,2023.(in Chinese))
[23] MAO R,ZHAO Z L,TIAN L,et al. Generation of gridded temperature map of constant-temperature layer based on meteorological data for shallow geothermal applications[J]. Geothermics,2023,113:102770.
[24] 周 阳,张 卉,江星辰,等. 陕西省恒温层深度主要影响因素及其估算[J]. 中国地质调查,2019,6(3):81–86.(ZHOU Yang,ZHANG Hui,JIANG Xingchen,et al. Influencing factors of constant-temperature layer depth and its estimation in Shaanxi Province[J]. Geological Survey of China,2019,6(3):81–86.(in Chinese))
[25] CARSLAW H S. Conduction of heat in solids[M]. Oxford:Oxford University Press,1959:78–91.
[26] ?ERMák V,BODRI L. Two-dimensional temperature modelling along five East-European geotraverses[J]. Journal of Geodynamics,1986,5:133–163.
[27] 刘晓燕,赵 军,石 成,等. 土壤恒温层温度及深度研究[J]. 太阳能学报,2007,28(5):494–498.(LIU Xiaoyan,ZHAO Jun,SHI Cheng,et al. Study on soil layer of constant temperature[J]. Acta Energiae Solaria Sinica,2007,28(5):494–498.(in Chinese))
[28] MINNETT P J,ALVERA-AZCÁRATE A,CHIN T M,et al. Half a century of satellite remote sensing of sea-surface temperature[J]. Remote Sensing of Environment,2019,233:111366.
[29] 那 强,历 华,曹 彪,等. 青藏高原0.01°全天候半球地表温度数据集(2015-2023)[DB/OL]. 国家青藏高原数据中心,2024.[2024.10.19]. https://www.tpdc.ac.cn/.(NA Qiang,LI Hua,CAO Biao,et al. 0.01° all-weather hemispherical surface temperature dataset on the Qinghai Tibet Plateau(2015-2023)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center,2024. [2024.10.19]. https://www.tpdc.ac.cn/. (in Chinese))
[30] LI H,YANG Y K,LI R B,et al. Comparison of the MuSyQ and MODIS collection 6 land surface temperature products over barren surfaces in the Heihe River Basin, China[J]. IEEE Transaction on Geoscience and Remote Sensing,2019,57(10):8 081–8 094.
[31] QIN B X,CAO B,ROUJEAN J L,et al. A thermal radiation directionality correction method for the surface upward longwave radiation of geostationary satellite based on a time-evolving kernel-driven model[J]. Remote Sensing of Environment,2023,294:113599.
[32] CAO B,ROUJEAN J L,GASTELLU-ETCHEGORRY J P,et al. A general framework of kernel-driven modeling in the thermal infrared domain[J]. Remote Sensing of Environment,2021,252:112157.
[33] QIN B X,CHEN S S,CAO B,et al. Angular normalization of GOES-16 and GOES-17 land surface temperature over overlapping region using an extended time-evolving kernel-driven model[J]. Remote Sensing of Environment,2025,318:114532.
[34] 柏 露,姚宜斌,雷祥旭,等. 近40年青藏高原地区地表温度的年际及季节性变化特征分析[J]. 测绘地理信息,2018,43(2):15–18.(BAI Lu,YAO Yibin,LEI Xiangxu,et al. Annual and seasonal variation characteristics of surface temperature in the Tibetan Plateau in recent 40 years[J]. Journal of Geomatics,2018,43(2):15–18.(in Chinese))
[35] 郭平业,卜墨华,李清波,等. 岩石有效热导率精准测量及表征模型研究进展[J]. 岩石力学与工程学报,2020,39(10):1 983–2 013. (GUO Pingye,BU Mohua,LI Qingbo,et al. Research progress of accurate measurement and characterization model of effective thermal conductivity of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):1 983–2 013.(in Chinese))
[36] 孙克国,甄映州,魏 勇,等. 富水岩溶区基坑稳定性影响规律与分析[J]. 现代隧道技术,2023,60(1):149–158.(SUN Keguo,ZHEN Yingzhou,WEI Yong,et al. Influence law and analysis of foundation pit stability in eater-bearing karst Area[J]. Modern Tunnelling Technology,2023,60(1):149–158.(in Chinese))
[37] 李 刚,钟小春. 寒区隧道围岩温度场分布特征及影响因素分析[J]. 建筑科学与工程学报,2024,41(2):143–152.(LI Gang,ZHONG Xiaochun. Temperature field distribution characteristics in cold region tunnels and surrounding rock and analysis of influencing factors[J]. Journal of Architecture and Civil Engineering,2024,41(2):143–152.(in Chinese))
[38] 郭亚军,马凤妹,董庆兴. 无量纲化方法对拉开档次法的影响分析[J]. 管理科学学报,2011,14(5):19–28.(GUO Yajun,MA Fengmei,DONG Qingxing. Analysis of influence of dimension less methods on deviation maximization method[J]. Journal of Management Sciences in China,2011,14(5):19–28.(in Chinese)) |
|
|
|