|
|
|
| Effects of rock strength and particle breakage on shear characteristics of soil-rock mixtures |
| SUN Cangqian1, 2, CHEN Fujiang1, 3, 4, 5, 6, HE Xiangyang3, 6, ZENG Feng1, 3, 4, 5, GAO Meiben1, 3, 4, 5, ZHANG Xin7 |
(1. School of Emergency Management, Xihua University, Chengdu, Sichuan 610039, China; 2. Sichuan Fast Fire Safety Assessment Co., Ltd., Chengdu, Sichuan 610036, China; 3. National Dam Safety Research Center, Wuhan, Hubei 430010, China; 4. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu,
Sichuan 610059, China; 5. State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute
of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 6. Changjiang Survey,
Planning, Design and Research Co., Ltd., Wuhan, Hubei 430010, China; 7. School of Architecture and Civil
Engineering, Xihua University, Chengdu, Sichuan 610039, China) |
|
|
|
|
Abstract Crushed stone strength and particle breakage are critical factors influencing the shear behavior of soil-rock mixtures (SRM). To investigate the interaction mechanisms between rock strength, particle breakage, and shear characteristics, dyed mortar was employed to fabricate crushed stones of varying strengths, thereby preparing pure SRM. Stacked ring shear tests and sieve analyses were conducted to examine their shear behavior and particle breakage characteristics, accompanied by a proposed cumulative maximum breakage index . The results indicate that: (1) Increased crushed stone strength enhances dilatancy while reducing contraction in SRM. Particle breakage diminishes SRM dilatancy, revealing a critical dilatancy threshold under minimum top pressure. (2) Particle breakage primarily generates first-order debris, with the medium-size fraction exhibiting the highest degree of breakage, which is inconsistent with initial content distributions. (3) Higher unconfined compressive strength ( ) of crushed stone increases both the internal friction angle ( ) and the linear component of shear strength. The cohesion (c) demonstrates a quadratic relationship with . (4) The breakage index proves to be effective in quantifying particle breakage, with its relationships to top pressure and gravel strength being mathematically describable through planar equations. Notably, shows superior sensitivity to variations in both crushed stone strength and top pressure compared to conventional indices.
|
|
|
|
|
|
[1] HE Z L,ZHANG J Y,SUN T. Influence of maximum particle diameter on the mechanical behavior of soil-rock mixtures[J]. Advances in Civil Engineering,2020,(1):8850221.
[2] WEI H Z,XU W J,WEI C F,et al. Influence of water content and shear rate on the mechanical behavior of soil-rock mixtures[J]. Science China Technological Sciences,2018,61(8):1 127–1 136.
[3] 涂义亮,刘新荣,任青阳,等. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学,2020,41(12):3 919–3 928.(TU Yiliang,LIU Xinrong,REN Qingyang,et.al. Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics,2020,41(12):3 919–3 928.(in Chinese))
[4] 刘 琼,曾 铃,查焕奕,等. 击实和三轴压缩条件下炭质泥岩的颗粒破碎及力学响应研究[J]. 中南大学学报:自然科学版,2024,55(3):1 120–1 131.(LIU Qiong,ZENG Ling,ZHA Huanyi,et.al Investigation of particle fragmentation and mechanical response of carbonaceous mudstone under percussive and triaxial compression conditions[J]. Journal of Central South University:Science and Technology,2024,55(3):1 120–1 131.(in Chinese))
[5] 周伦伦. 颗粒破碎与形状对颗粒材料力学性质影响的离散元研究[博士学位论文][D]. 武汉:武汉大学,2017.(ZHOU Lunlun. DEM investigation of influence of particle breakage and shape on the mechanical behaviors of granular materials[Ph. D. Thesis][D]. Wuhan:Wuhan University,2017.(in Chinese))
[6] XU W J,ZHANG H Y. Research on the effect of rock content and sample size on the strength behavior of soil-rock mixture[J]. Bulletin of Engineering Geology and the Environment,2021,80(3):2 715– 2 726.
[7] 王永鑫,邵生俊,王 智. 砂质卵砾石力学行为与颗粒破碎的试验研究[J]. 岩石力学与工程学报,2020,39(6):1 287–1 296.(WANG Yongxin,SHAO Shengjun,WANG Zhi. Experimental study on mechanical behaviors and particle breakage of sandy gravel[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1 287–1 296.(in Chinese))
[8] 任明辉,赵光思,浦 海,等. 无黏性松散土石混合体剪切特性的结构效应及强度模型构建[J]. 岩石力学与工程学报,2024, 43(7):1 707–1 721.(REN Minghui,ZHAO Guangsi,PU Hai,et al. Structural effects of shearing properties of loose cohesionless soil-rock mixture and development of strength model[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(7):1 707–1 721.(in Chinese))
[9] ZHAO Y X,LIU Z X. Study of material composition effects on the mechanical properties of soil-rock mixtures[J]. Advances in Civil Engineering,2018,(1):3854727.
[10] 刘红位,游诗琪,简文彬,等. 干湿循环下煤矸石土石混合体大型直剪试验研究[J]. 岩石力学与工程学报,2025,44(2):331–341.(LIU Hongwei,YOU Shiqi,JIAN Wenbin,et al. Study on large direct shear test of coal gangue soil-rock mixture under wetting-drying cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(2):331–341.(in Chinese))
[11] DONG H,PENG B C,GAO Q F,et al. Study of hidden factors affecting the mechanical behavior of soil-rock mixtures based on abstraction idea[J]. Acta Geotechnic,2021,16(2):595–611.
[12] 杨忠平,赵亚龙,胡元鑫,等. 块石强度对土石混合料剪切特性的影响[J]. 岩石力学与工程学报,2021,40(4):814–827.(YANG Zhongping,ZHAO Yalong,HU Yuanxin,et al. Effect of the strength of rock blocks on the shear characteristics of soil-rock mixtures[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):814–827.(in Chinese))
[13] 张俊云,张 乐,高福洲,等. 粒度分布对红层土石混合体强度及颗粒破碎的影响[J]. 工程地质学报,2024,32(5):1 499–1 508. (ZHANG Junyun,ZHANG Le,GAO Fuzhou,et al. Effect of particle size distribution on strength and particle breakage of red-bed soil-rock mixture[J]. Journal of Engineering Geology,2024,32(5):1 499– 1 508.(in Chinese))
[14] 刘新荣,涂义亮,王 鹏,等. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报,2017,39(8):1 425–1 434.(LIU Xinrong,TU Yiliang,WANG Peng,et al. Particle breakage of soil-rock aggregate based on large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering,2017,39(8):1 425–1 434.(in Chinese))
[15] 彭 宇,丁选明,肖 杨,等. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究[J]. 岩土力学,2019,40(7):2 663–2 672. (PENG Yu,DING Xuanming,XIAO Yang,et al. Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method[J]. Rock and Soil Mechanics,2019,40(7):2 663–2 672.(in Chinese))
[16] 于际都,沈超敏,刘斯宏. 染色石膏颗粒一维压缩破碎与粒径迁移[J]. 岩石力学与工程学报,2020,39(5):1 071–1 079.(YU Jidu,SHEN Chaomin,LIU Sihong. Breakage and migration of dyed gypsum particles under one-dimensional compression[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(5):1 071–1 079.(in Chinese))
[17] 王嘉璐,张 升,童晨曦,等. 基于染色标定的钙质砂颗粒破碎级配转移矩阵试验研究[J]. 岩土力学,2022,43(8):2 222–2 232. (WANG Jialu,ZHANG Sheng,TONG Chenxi,et al. Experimental study on the gradation transition matrix of dyed carbonate sands during particle breakage[J]. Rock and Soil Mechanics,2022,43(8):2 222–2 232.(in Chinese))
[18] TU Y L,REN S Y,LI L S,et al. Comparative analysis on shear mechanical properties of soil- rock mixture under direct shear and simple shear tests[J]. Construction and Building Materials,2024,444:137830.
[19] LI S Q,YANG Z P,TIAN X,et al. Influencing factors of scale effects in large-scale direct shear tests of soil-rock mixtures based on particle breakage[J]. Transportation Geotechnics,2021,31:100677.
[20] XU W J,ZHANG H Y. Meso and macroscale mechanical behaviors of soil-rock mixtures[J]. Acta Geotechnica,2022,17(9):3 765– 3 782.
[21] 江洎洧,程展林,潘家军,等. 基于大型叠环剪切试验的松散土石体强度及变形特性试验研究[J]. 岩石力学与工程学报,2017,36(增1):3 636–3 643.(JIANG Jiwei,CHENG Zhanlin,PAN Jiajun,et al. Experimental study on the stress-strain and strength characteristics of loose rock-soil aggregates based on large-size stacked ring shear test[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(Supp.1):3 636–3 643.(in Chinese))
[22] 石 崇,张 强,王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社,2018:324–327.(SHI Chong,ZHANG Qiang,WANG Shengnian. Numerical simulation technology and application with particle flow code(PFC5.0)[M]. Beijing:China Architecture and Building Press,2018:324–327.(in Chinese))
[23] 王晋伟,迟世春,闫世豪,等. 室内缩尺级配堆石料力学参数的表征单元体积[J]. 浙江大学学报:工学版,2023,57(7):1 418–1 427. (WANG Jinwei,CHI Shichun,YAN Shihao,et al. Representative elementary volume of mechanical parameter of rockfill material with laboratory scaled gradation[J]. Journal of Zhejiang University:Engineering Science,2023,57(7):1 418–1 427.(in Chinese))
[24] 孟敏强,袁正鑫,蒋 翔. 钙质砂–石英砂单颗粒破碎–强度–尺寸效应试验研究[J]. 中国科学:技术科学,2022,52(7):1 035–1 047. (MENG Minqiang,YUAN Zhengxin,JIANG Xiang. Experimental study of the single-particle crushing-strength-size effect of calcareous sand-quartz sand[J]. Scientia Sinica:Technologica,2022,52(7): 1 035–1 047.(in Chinese))
[25] FANG CH F,GONG JIAN,NIE Z H,et al. DEM study on the microscale and macroscale shear behaviours of granular materials with breakable and irregularly shaped particles[J]. Computers and Geotechnics,2021,137:104271.
[26] OVALLE C,FROSSARD E,DANO C,et al. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data[J]. Acta Mechanica,2014,225(8):2 199–2 216.
[27] 马 刚,王 渊,程家林,等. 遇水湿化对堆石体颗粒破碎和压缩特性的影响研究[J]. 岩土工程学报,2021,43(9):1 640–1 648.(MA Gang,WANG Yuan,CHENG Jialin,et.al Influences of wetting on crushing and compression characteristics of rockfill particles[J]. Chinese Journal of Geotechnical Engineering,2021,43(9):1 640–1 648.(in Chinese))
[28] 宋兴海,任永旺,刘子苑,等. 粗粒土颗粒破碎效应量化分析[J]. 土木工程与管理学报,2020,37(2):158–162.(SONG Xinghai,REN Yongwang,LIU Ziyuan,et al. Quantitative analysis of particle breakage effect for coarse-grained soil[J]. Journal of Civil Engineering and Management,2020,37(2):158–162.(in Chinese))
[29] 顾晓强,梁玉珍,周奇辉,等. 白鹤滩水电站高填方工程砾石填料的物理力学特性[J]. 同济大学学报:自然科学版,2022,50(4):528–536.(GU Xiaoqiang,LIANG Yuzhen,ZHOU Qihui,et al. Physical and mechanical properties of gravelly soils used in high fill project of Baihetan Hydropower Station[J]. Journal of Tongji University:Natural Science,2022,50(4):528–536.(in Chinese))
[30] 雷晓丹,杨忠平,张晓景,等. 土石混合料剪切特性及块石破碎特征[J]. 岩土力学,2018,39(3):899–908.(LEI Xiaodan,YANG Zhongping,ZHANG Xiaojing,et al. Shear properties and rock block breakage characteristics of soil-rock mixtures[J]. Rock and Soil Mechanics,2018,39(3):899–908.(in Chinese))
[31] 中华人民共和国国家标准编写组. GB/T 50123—2019 土工试验方法标准[S]. 北京:中国计划出版社,2019.(The National Standards Compilation Group of People?s Republic of China. GB/T 50123—2019 Standard for geotechnical testing method[S]. Beijing:China Planning Publishing House,2019.(in Chinese))
[32] 李广信. 高等土力学[M]. 北京:清华大学出版社,2004:116–122.(LI Guangxin. Advanced soil mechanics[M]. Beijing:Tsinghua University Press,2004:116–122.(in Chinese))
|
|
|
|