[8] |
陈 平,韩 强,马天寿,等. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发,2015,42(5):662–670.(CHEN Ping,HAN Qiang,MA Tianshou,et al. Study on mechanical properties of shale based on micron indentation experiment[J]. Petroleum Exploration and Development,2015,42(5):662–670.(in Chinese))
|
[18] |
ABEDI S,SLIM M,HOFMANN R,et al. Nanochemo-mechanical signature of organic-rich shales:a coupled indentation-EDX analysis[J]. Acta Geotechnica,2016,11(3):559–572.
|
[28] |
ZHOU Z L,LEI B X,CAI X,et al. Estimating macrofracture toughness of sandstone based on Nanoindentation[J]. Geofluids,2021,https://doi.org/10.1155/2021/6621643.
|
[38] |
EPSHTEIN S A,BORODICH F M,BULL S J. Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation[J]. Applied Physics A,2015,119(1):325–335.
|
[48] |
LI Y,CHEN J Q,YANG J H,et al. Determination of shale macroscale modulus based on microscale measurement:A case study concerning multiscale mechanical characteristics[J]. Petroleum Science,2022, 19(3):1 262–1 275.
|
[58] |
LIU K,RASSOULI F S,LIU B,et al. Creep behavior of shale: nanoindentation vs. triaxial creep tests[J]. Rock Mechanics and Rock Engineering,2021,54(1):321–335.
|
[68] |
邹雨时,李彦超,李四海. CO2前置注入对页岩压裂裂缝形态和岩石物性的影响[J]. 天然气工业,2021,41(10):83–94.(ZOU Yushi,LI Yanchao,LI Sihai. Effect of CO2 pre-injection on fracture morphology and petrophysical properties of shale fracturing[J]. Natural Gas Industry,2021,41(10):83–94.(in Chinese))
|
[78] |
ELIYAHU M,EMMANUEL S,DAY-STIRRAT R J,et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology,2015,59:294–304.
|
[88] |
MENG J,WANG L,ZHANG S,et al. Effect of anionic/nonionic surfactants on the wettability of coal surface[J]. Chemical Physics Letters,2021,785:139130.
|
[90] |
DAPHALAPURKAR N P,WANG F,FU B,et al. Determination of mechanical properties of sand grains by nanoindentation[J]. Experimental Mechanics,2011,51(5):719–728.
|
[92] |
MAHESAR A A,ALI M,SHAR A M,et al. Effect of cryogenic liquid nitrogen on the morphological and petrophysical characteristics of tight gas sandstone rocks from kirthar fold belt,Indus Basin,Pakistan[J]. Energy and Fuels,2020,34(11):14 548–14 559.
|
[94] |
PAN J,SHEN Y,YANG G,et al. Debonding behaviors and micro-mechanism of the interface transition zone in sandstone-concrete interface in response to freeze-thaw conditions[J]. Cold Regions Science and Technology,2021,191:103359.
|
[97] |
VALDES C C,HEIDARI Z. Application of nanoindentation for uncertainty assessment of elastic properties in mudrocks from micro-to well-log scales[J]. Geophysics,2017,82(6):327–339.
|
[13] |
孙长伦,李桂臣,ELGHARIB G M,等. 基于纳米压痕技术的破碎煤样力学特性实验研究[J]. 煤炭学报,2020,46(增2):682–691.(SUN Chanlun,LI Guichen,ELGHARIB G M,et al. Experimental study on mechanical properties of crushed coal samples based on nanoindentation technology[J]. Journal of China Coal Society,2020,46(Supp.2):682–691.(in Chinese))
|
[14] |
JIA C J,XU W Y,WANG R B,et al. Experimental investigation on shear creep properties of undisturbed rock discontinuity in Baihetan Hydropower Station[J]. International Journal of Rock Mechanics and Mining Sciences,2018,104:27–33.
|
[19] |
LIU K,OSTADHASSAN M,BUBACH B. Application of nanoindentation to characterize creep behavior of oil shales[J]. Journal of Petroleum Science and Engineering,2018,167:729–736.
|
[21] |
时 贤,蒋 恕,卢双舫,等. 利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发,2019,46(1):155–164.(SHI Xian,JIANG Shu,LU Shuangfang,et al. Using nanoindentation experiment to study the mechanical properties of layered shale rock-taking Longmaxi Formation of Lower Silurian in Youyang area of southeast Chongqing as an example[J]. Petroleum Exploration and Development,2019,46(1):155–164.(in Chinese))
|
[24] |
HACKNEY S A,AIFANTIS K E,TANGTRAKARN A,et al. Using the Kelvin-Voigt model for nanoindentation creep in Sn-C/PVDF nanocomposites[J]. Materials Science and Technology,2012,28(9–10):1 161–1 166.
|
[34] |
张 旭,屈腾飞,尚福林,等. 基于应变梯度晶体塑性理论的金属微柱轴向压缩有限元分析[J]. 应用力学学报,2021,38(5):1 768–1 774.(ZHANG Xu,QU Tengfei,SHANG Fulin,et al. Finite element analysis of axial compression of metal microcolumns based on strain gradient crystal plasticity theory[J]. Journal of Applied Mechanics,2021,38(5):1 768–1 774.(in Chinese))
|
[44] |
ZHANG G,WEI Z,FERRELL R E. Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation[J]. Applied Clay Science,2009,43(2):271–281.
|
[51] |
MAIER V,DURST K,MUELLER J,et al. Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al[J]. Journal of Materials Research,2011,26(11):1 421–1 430.
|
[54] |
PHANI P S,OLIVER W C,PHARR G M. On the measurement of power law creep parameters from instrumented indentation[J]. JOM: the Journal of the Minerals,Metals and Materials Society,2017,69(11):2 229–2 236.
|
[56] |
SUN C L,LI G C,GOMAH M E,et al. Creep characteristics of coal and rock investigated by nanoindentation[J]. International Journal of Mining Science and Technology,2020,30(6):769–776.
|
[59] |
BENNETT K C,BERLA L A,NIX W D,et al. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales[J]. Acta Geotechnica,2015,10(1):1–14.
|
[61] |
LIU K,OSTADHASSAN M,XU X,et al. Abnormal behavior during nanoindentation holding stage:Characterization and explanation[J]. Journal of Petroleum Science and Engineering,2018,173:733–747.
|
[15] |
SONE H,ZOBACK M D. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress[J]. International Journal of Rock Mechanics and Mining Sciences,2014,69:120–132.
|
[32] |
章骁程,关凯书. 微柱压缩试验:一种获得在役设备强度的微损测试方法[C]// 压力容器先进技术——第十届全国压力容器学术会议论文集(下). 杭州:[s. n],2021:246–258.(ZHANG Xiaocheng,GUAN Kaishu. Micro-column compression test:a micro-damage test method for obtaining the strength of in-service equipment[C]// Advanced Technology of Pressure Vessels—Proceedings of the 10th National Conference on Pressure Vessels(Part Two). Hangzhou:[s. n],2021:246–258.(in Chinese))
|
[42] |
XU T,DU Y,LUO H,et al. Characterization of the mechanical behavior of Colorado Mason sand at grain-level by nanoindentation[J]. Experimental Mechanics,2018,58(3):1–15.
|
[52] |
MAYO M J,NIX W D. A micro-indentation study of superplasticity in Pb,Sn,and Sn–38 wt% Pb[J]. Acta Metallurgica,1988,36(8):2 183–2 192.
|
[62] |
ZHANG L,SHAO L,LI L,et al. An abnormal displacement change during holding period in nanoindentation tests on zirconia dental ceramic[J]. Journal of Advanced Ceramics,2016,5(2):153–158.
|
[64] |
SUN C L,LI G C,ZHANG S H,et al. Mechanical and heterogeneous properties of coal and rock quantified and mapped at the microscale[J]. Applied Sciences,2020,10(1):342.
|
[69] |
XIE Q. Mechanical characterization of kerogen in black siliceous shale via nanoindentation[C]// SEG Technical Program Expanded Abstracts 2016. [S. l.]:Society of Exploration Geophysicists,2016:3 348– 3 353.
|
[16] |
YU H,ZHANG Y,LEBEDEV M,et al. Nanoscale geomechanical properties of Western Australian coal[J]. Journal of Petroleum Science and Engineering,2018,162:736–746.
|
[72] |
ZARGARI S,PRASAD M,MBA K C,et al. Organic maturity,hydrous pyrolysis and elastic property in shales[C]// Canadian Unconventional Resources Conference. Calgary,Alberta,Canada:[s. n.],2011:SPE-149403-MS.
|
[74] |
LIU K Q,OSTADHASSAN M,LI C. Quantifying the nano-mechanical signature of shale oil formations by nanoindentation[C]// Unconventional Resources Technology Conference. Austin,Texas:Society of Exploration Geophysicists,American Association of Petroleum Geologists,Society of Petroleum Engineers,2017:2 075–2 083.
|
[76] |
JIA L,DENG H,LIU D. Mechanical properties of organic-rich shales based on nanoindentation:A case study of deep shale gas reservoirs in Zigong area,Sichuan Basin[C]// IOP Conference Series:Earth and Environmental Science. Jakarta,Indonesia:IOP Publishing,2020,570(3):032039.
|
[25] |
GUPTA I,SONDERGELD C,RAI C. Fracture toughness in shales using nano-indentation[J]. Journal of Petroleum Science and Engineering,2020,191:107222.
|
[79] |
ALSINAN S. Effect of artificially induced maturation on the elastic properties of kerogen[C]// 2017 SEG International Exposition and Annual Meeting. Houston,USA:[s. n.],2017:3 647–3 652.
|
[75] |
LIU K,OSTADHASSAN M. Microstructural and geomechanical analysis of Bakken shale at nanoscale[J]. Journal of Petroleum Science and Engineering,2017,153:133–144.
|
[23] |
孙长伦,李桂臣,许嘉徽,等. 砂岩矿物组分流变特性纳米压痕实验研究[J]. 岩石力学与工程学报,2021,40(1):77–87.(SUN Chamglun,LI Guichen,XU Jiahui,et al. Experimental study on rheological properties of sandstone minerals by nanoindentation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):77–87(in Chinese))
|
[26] |
CHEN J,BULL S J. Assessment of the toughness of thin coatings using nanoindentation under displacement control[J]. Thin Solid Films,2006,494(1/2):1–7.
|
[29] |
CHENG Y T,LI Z,CHENG C M. Scaling relationships for indentation measurements[J]. Philosophical Magazine A,2002,82(10):1 821–1 829.
|
[53] |
SCHOLZ C H. Mechanism of creep in brittle rock[J]. Journal of Geophysical Research,1968,73(10):3 295–3 302.
|
[31] |
SEBASTIANI M,JOHANNS K E,HERBERT E G,et al. Measurement of fracture toughness by nanoindentation methods:Recent advances and future challenges[J]. Current Opinion in Solid State and Materials Science,2015,19(6):324–333.
|
[22] |
HERTZ H. On the contact of elastic solids[J]. Crelle's Journal,1881,92:156–171.
|
[33] |
刘亚妮,彭升远,薛建明,等. Ti3SiC2陶瓷室温压缩变形行为的尺寸效应[J]. 材料热处理学报,2021,42(11):147–154.(LIU Yani,PENG Shengyuan,XUE Jianming,et al. Size effect of compression deformation behavior of Ti3SiC2 ceramics at room temperature[J]. Journal of Heat Treatment of Materials,2021,42(11):147–154.(in Chinese))
|
[35] |
VEYTSKIN Y B,TAMMINA V K,BOBKO C P,et al. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry[J]. Geomechanics for Energy and the Environment,2017,9:21–35.
|
[1] |
VIKTOROV S D,GOLOVIN Y I,KOCHANOV A N,et al. Micro- and nano-indentation approach to strength and deformation characteristics of minerals[J]. Journal of Mining Science,2014,50(4):652–659.
|
[36] |
BOBJI M S,BISWAS S K. Deconvolution of hardness from data obtained from nanoindentation of rough surfaces[J]. Journal of Materials Research,1999,14(6):2 259–2 268.
|
[3] |
张艳博,张恩源,姚旭龙,等. 考虑矿物细观结构的岩石数字化模型构建及其应用[J]. 岩石力学与工程学报,2021,40(增2):3 212–3 226.(ZHANG Yanbo,ZHANG Enyuan,YAO Xulong,et al. Construction and application of digital rock model considering mineral microstructure[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Supp.2):3 212–3 226.(in Chinese))
|
[39] |
KOSSOVICH E,EPSHTEIN S,DOBRYAKOVA N,et al. Mechanical properties of thin films of coals by nanoindentation[C]// Conference on Physical and Mathematical Modeling of Earth and Environment Processes. Cham:Springer,2017:45–50.
|
[5] |
LI C,OSTADHASSAN M,KONG L,et al. Multi-scale assessment of mechanical properties of organic-rich shales:A coupled nanoindentation,deconvolution analysis,and homogenization method[J]. Journal of Petroleum Science and Engineering,2019,174:80–91.
|
[41] |
ARGATOV I I,BORODICH F M,EPSHTEIN S A,et al. Contact stiffness depth-sensing indentation:Understanding of material properties of thin films attached to substrates[J]. Mechanics of Materials,2017,114:172–179.
|
[89] |
ZHANG Y,LEBEDEV M,AL-YASERI A,et al. Nanoscale rock mechanical property changes in heterogeneous coal after water adsorption[J]. Fuel,2018,218:23–32.
|
[43] |
ZESZOTARSKI J C,CHROMIK R R,VINCI R P,et al. Imaging and mechanical property measurements of kerogen via nanoindentation[J]. Geochimica Et Cosmochimica Acta,2004,68(20):4 113–4 119.
|
[111] |
MANJUNATH G L,JHA B. Nanoscale fracture mechanics of Gondwana coal[J]. International Journal of Coal Geology,2019, 204:102–112.
|
[45] |
CONSTANTINIDES G,CHANDRAN K S R,ULM F J,et al. Grid indentation analysis of composite microstructure and mechanics:Principles and validation[J]. Materials Science and Engineering:A,2006,430(1–2):189–202.
|
[46] |
毛伟泽. 花岗岩力学性质变异性的细观机制研究[博士学位论文][D]. 杭州:浙江大学,2020.(MAO Weize. Study on meso-mechanism of variability of mechanical properties of granite[Ph. D. Thesis][D]. Hangzhou:Zhejiang University,2020.(in Chinese))
|
[4] |
VIALLE S,LEBEDEV M. Heterogeneities in the elastic properties of microporous carbonate rocks at the microscale from nanoindentation tests[C]// SEG Technical Program Expanded Abstracts 2015. Melbourne:[s. n.],2015:3 279–3 284.
|
[49] |
LUCAS B N,OLIVER W C. Indentation power-law creep of high-purity indium[J]. Metallurgical and Materials Transactions A,1999,30(3):601–610.
|
[6] |
孟筠青,牛家兴,夏捃凯,等. 纳米尺度下煤的力学性质及破坏机制研究[J]. 岩石力学与工程学报,2020,39(1):84–92.(MENG Yunqing,NIU Jiaxing,XIA Xiankai,et al. Study on mechanical properties and failure mechanism of coal at nanometer scale[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):84–92.(in Chinese))
|
[66] |
MONDOL N H,JAHREN J,BJORLYKKE K,et al. Elastic properties of clay minerals[J]. The Leading Edge,2008,27(6):758–770.
|
[9] |
张兆鹏,张士诚,石善志,等. 基于纳米压痕实验和均匀化方法评价砾岩多尺度力学性质——以玛湖凹陷南斜坡致密砾岩储层为例[J]. 岩石力学与工程学报,2022,41(5):926–940.(ZHANG Zhaopeng,ZHANG Shicheng,SHI Shanzhi,et al. Evaluation of multi-scale mechanical properties of conglomerate based on nano-indentation experiment and homogenization method-taking the tight conglomerate reservoir on the south slope of Mahu sag as an example[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):926–940.(in Chinese))
|
[86] |
LUO S,WU Y,LI Y,et al. Nanoindentation-enhanced screening of hydraulic fracturing fluid additives[J]. International Journal of Coal Geology,2021,240:103744.
|
[11] |
LI C,OSTADHASSAN M,ABARGHANI A,et al. Multi-scale evaluation of mechanical properties of the Bakken shale[J]. Journal of Materials Science,2019,54(3):2 133–2 151.
|
[106] |
VANDAMME M,ULM F J. Nanoindentation investigation of creep properties of calcium silicate hydrates[J]. Cement and Concrete Research,2013,52:38–52.
|
[55] |
LIU K,OSTADHASSAN M,BUBACH B,et al. Nano-dynamic mechanical analysis(nano-DMA) of creep behavior of shales:Bakken case study[J]. Journal of Materials Science,2018,53(6):4 417– 4 432.
|
[63] |
SHI X,JIANG S,WANG Z,et al. Application of nanoindentation technology for characterizing the mechanical properties of shale before and after supercritical CO2 fluid treatment[J]. Journal of CO2 Utilization,2020,37:158–172.
|
[65] |
LIU K,OSTADHASSAN M,BUBACH B,et al. Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken Shale[J]. Journal of Natural Gas Science and Engineering,2018,53:181–190.
|
[73] |
KUMAR V,CURTIS M E,GUPTA N,et al. Estimation of elastic properties of organic matter in woodford shale through nanoindentation measurements[C]// Proceedings of the SPE Canadian Unconventional Resources Conference. Calgary,Alberta,Canada:[s. n.],2012,DOI:10.2118/162778-MS.
|
[84] |
BOBKO C,ULM F J. The nano-mechanical morphology of shale[J]. Mechanics of Materials,2008,40(4–5):318–337.
|
[83] |
CALA M,CYRAN K,KAWA M,et al. Identification of microstructural properties of shale by combined use of X-ray micro-CT and nanoindentation tests[J]. Procedia Engineering,2017,191:735–743.
|
[85] |
XU J,TANG X,WANG Z,et al. Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations[J]. Engineering Geology,2020,277:105801.
|
[2] |
段永婷,冯夏庭,李 晓. 页岩细观矿物条带对其宏观破坏模式的影响研究[J]. 岩石力学与工程学报,2021,40(1):43–52.(DUAN Yongting,FENG Xiating,LI Xiao. Study on the influence of meso-mineral bands of shale on its macro failure mode[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):43–52.(in Chinese))
|
[10] |
邹雨时,石善志,张士诚,等. 致密砾岩加砂压裂与裂缝导流能力实验——以准噶尔盆地玛湖致密砾岩为例[J]. 石油勘探与开发,2021,48(6):1 202–1 209.(ZOU Yushi,SHI Shanzhi,ZHANG Shicheng,et al. Experiment on sand fracturing and fracture conductivity of tight conglomerate-taking Mahu tight conglomerate in Junggar Basin as an example[J]. Petroleum Exploration and Development,2021,48(6):1 202–1 209.(in Chinese))
|
[12] |
SHUKLA P,KUMAR V,CURTIS M,et al. Nanoindentation studies on shales[C]// Proceedings of the 47th U.S. Rock Mechanics/ Geomechanics Symposium. San Francisco,California:[s. n.],2013:ARMA–2013–578.
|
[93] |
MARUVANCHERY V,KIM E. Mechanical characterization of thermally treated calcite-cemented sandstone using nanoindentation,scanning electron microscopy and automated mineralogy[J]. International Journal of Rock Mechanics and Mining Sciences,2020,125:104158.
|
[20] |
OLIVER W C,PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research,1992,7(6): 1 564–1 583.
|
[95] |
ZHANG F,GUO H,HU D,et al. Characterization of the mechanical properties of a claystone by nano-indentation and homogenization[J]. Acta Geotechnica,2018,13(6):1 395–1 404.
|
[30] |
WHEELER J M,ARMSTRONG D E J,HEINZ W,et al. High temperature nanoindentation:The state of the art and future challenges[J]. Current Opinion in Solid State and Materials Science,2015,19(6):354–366.
|
[103] |
张 帆,胡 维,郭翰群,等. 热处理后花岗岩纳米压痕试验研究[J]. 岩土力学,2018,39(增1):235–243.(ZHANG Fan,HU Wei,GUO Hanqun,et al. Experimental study on nano-indentation of granite after heat treatment[J]. Rock and soil Mechanics,2018,39(Supp.1): 235–243.(in Chinese))
|
[40] |
BORODICH F M,BULL S J,EPSHTEIN S A. Nanoindentation in studying mechanical properties of heterogeneous materials[J]. Journal of Mining Science,2015,51(3):470–476.
|
[113] |
MARTOGI D,ABEDI S. Microscale approximation of the elastic mechanical properties of randomly oriented rock cuttings[J]. Acta Geotechnica,2020,15(12):3 511–3 524.
|
[50] |
MAYO M J,SIEGEL R W,NARAYANASAMY A,et al. Mechanical properties of nanophase TiO2 as determined by nanoindentation[J]. Journal of Materials Research,1990,5(5):1 073–1 082.
|
[71] |
YANG J,HATCHERIAN J,HACKLEY P C,et al. Nanoscale geochemical and geomechanical characterization of organic matter in shale[J]. Nature Communications,2017,8(1):1–9.
|
[81] |
WU Y,LI Y,LUO S,et al. Multiscale elastic anisotropy of a shale characterized by cross-scale big data nanoindentation[J]. International Journal of Rock Mechanics and Mining Sciences,2020,134:104458.
|
[7] |
胡 敏,徐国元,胡盛斌. 基于Eshelby张量和Mori-Tanaka等效方法的砂卵石土等效弹性模量研究[J]. 岩土力学,2013,34(5):1 437–1 442.(HU Min,XU Guoyuan,HU Shengbin. Study on equivalent elastic modulus of sand-pebble soil based on Eshelby tensor and Mori-Tanaka equivalent method[J]. Rock and soil Mechanics,2013,34(5):1 437–1 442.(in Chinese))
|
[91] |
ZHANG W,NING Z,GAI S,et al. Fast and effective observations of the pore structure of tight sandstones at the same location by utilizing AFM and CF-SEM[J]. Journal of Petroleum Science and Engineering,2022,208:109554.
|
[17] |
MAGNENET V,AUVRAY C,FRANCIUS G,et al. Determination of the matrix indentation modulus of meuse/haute-marne argillite[J]. Applied Clay Science,2011,52(3):266–269.
|
[101] |
AYATOLLAHI M R,NAJAFABADI M Z,KOLOOR S S R,et al. Mechanical characterization of heterogeneous polycrystalline rocks using nanoindentation method in combination with generalized means method[J]. Journal of Mechanics,2020,36(6):813–823.
|
[27] |
SUN C L,LI G C,GOMAH M E,et al. Meso-scale mechanical properties of mudstone investigated by nanoindentation[J]. Engineering Fracture Mechanics,2020,238:107245.
|
[37] |
KIM J Y,LEE J J,LEE Y H,et al. Surface roughness effect in instrumented indentation:A simple contact depth model and its verification[J]. Journal of Materials Research,2011,21(12):2 975–2 978.
|
[96] |
XIANG D G,CHEN Z W,YANG Z N,et al. Probing the mechanical properties of shales by nanoindentation[C]// Geotechnical Frontiers 2017. Orlando,Florida:ASCE,2017:497–507.
|
[47] |
LIU K,OSTADHASSAN M,BUBACH B. Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks[J]. Journal of Natural Gas Science and Engineering,2016,35:1 310–1 319.
|
[98] |
SUN C L,LI G C,GOMAH M E,et al. Experimental investigation on the nanoindentation viscoelastic constitutive model of quartz and kaolinite in mudstone[J]. International Journal of Coal Science and Technology,2021,8(5):925–937.
|
[57] |
MIGHANI S,BERNABé Y,BOULENOUAR A,et al. Creep deformation in Vaca Muerta shale from nanoindentation to triaxial experiments[J]. Journal of Geophysical Research:Solid Earth,2019,124(8):7 842–7 868.
|
[100] |
BUCHNER S,MIKOWSKI A,LEPIENSKI C M,et al. Mechanical and tribological properties of a sintered glass-ceramic compared to granite and porcelainized stoneware[J]. Wear,2011,271(5/6):875–880.
|
[60] |
SHI X,JIANG S,YANG L,et al. Modeling the viscoelasticity of shale by nanoindentation creep tests[J]. International Journal of Rock Mechanics and Mining Sciences,2020,127:104210.
|
[102] |
张 帆,郭翰群,赵建建,等. 花岗岩微观力学性质试验研究[J]. 岩石力学与工程学报,2017,36(2):3 864–3 872.(ZHANG Fan,GUO Hanqun,ZHAO Jianjian,et al. Experimental study on micromechanical properties of granite[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):3 864–3 872.(in Chinese))
|
[67] |
MBA K,PRASAD M. Mineralogy and its contribution to anisotropy and kerogen stiffness variations with maturity in the Bakken Shales[C]// SEG Technical Program Expanded Abstracts 2010. [S. l.]:Society of Exploration Geophysicists,2010:2 612–2 616.
|
[104] |
唐旭海,邵祖亮,许婧璟,等. 高温-液氮循环处理下花岗岩损伤劣化机制[J]. 隧道与地下工程灾害防治,2022,4(1):18–28.(TANG Xuhai,SHAO Zuliang,XU Jingjing,et al. Damage and deterioration mechanism of granite under high temperature-liquid nitrogen cycle treatment[J]. Disaster Prevention and Control of Tunnel and Underground Engineering,2022,4(1):18–28.(in Chinese))
|
[105] |
VANDAMME M,ULM F J. Nanogranular origin of concrete creep[J]. Proceedings of the National Academy of Sciences,2009,106(26): 10 552–10 557.
|
[70] |
EMMANUEL S,ELIYAHU M,DAY-STIRRAT R J,et al. Impact of thermal maturation on nano-scale elastic properties of organic matter in shales[J]. Marine and Petroleum Geology,2016,70:175–184.
|
[107] |
SHARMA P,PRAKASH R,ABEDI S. Effect of temperature on nano- and microscale creep properties of organic-rich shales[J]. Journal of Petroleum Science and Engineering,2019,175:375–388.
|
[77] |
LUO S,LU Y,WU Y,et al. Cross-scale characterization of the elasticity of shales:Statistical nanoindentation and data analytics[J]. Journal of the Mechanics and Physics of Solids,2020,140:103945.
|
[108] |
MIGHANI S,TANEJA S,SONDERGELD C H,et al. Nanoindentation creep measurements on shale[C]// Proceedings of the 49th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco,California:[s. n.],2015:ARMA–2015–148.
|
[80] |
ZARGARI S. Effect of thermal maturity on nanomechanical properties and porosity in organic rich shales(a Bakken shale case study)[Ph. D. Thesis][D]. Colorado:Colorado School of Mines,2015.
|
[110] |
THOM C A,CARPICK R W,GOLDSBY D L. Constraints on the physical mechanism of frictional aging from nanoindentation[J]. Geophysical Research Letters,2018,45(24):306–311.
|
[112] |
LIU K,OSTADHASSAN M,XU X. A comparison study of the unloading behavior in shale samples in nanoindentation experiments using different models[J]. Journal of Petroleum Science and Engineering,2019,186(27/28):106715.
|
[114] |
KOSSOVICH E L,BORODICH F M,BULL S J,et al. Substrate effects and evaluation of elastic moduli of components of inhomogeneous films by nanoindentation[J]. Thin Solid Films,2016,619:112–119.
|
[82] |
SHI X,JIANG S,LU S,et al. Investigation of mechanical properties of bedded shale by nanoindentation tests:A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing,China[J]. Petroleum Exploration and Development,2019,46(1):163–172.
|
[87] |
MENG J,NIU J,MENG H,et al. Insight on adsorption mechanism of coal molecules at different ranks[J]. Fuel,2020,267:117234.
|
[115] |
ZHANG Y,ZHANG Z,SARMADIVALEH M,et al. Micro-scale fracturing mechanisms in coal induced by adsorption of supercritical CO2[J]. International Journal of Coal Geology,2017,175:40–50.
|
[99] |
BOBKO C P,ORTEGA J A,ULM F J. Comment on“Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation”by G. Zhang,Z. Wei and R.E. Ferrell [Applied Clay Science 43(2009) 271–281][J]. Applied Clay Science,2009,46(4):425–428.
|
[109] |
GOLDSBY D L,RAR A,PHARR G M,et al. Nanoindentation creep of quartz,with implications for rate-and state-variable friction laws relevant to earthquake mechanics[J]. Journal of Materials Research,2004,19(1):357–365.
|