(1. School of Civil Engineering and Architecture, Xi?an University of Technology, Shaanxi, Xi?an 710048, China; 2. State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Shaanxi,
Xi?an 710048, China; 3. China Construction Yangtze River (Malaysia) SDN BHD, Kuala Lumpur 50000, Malaysia)
Abstract:How can the essential requirements of retention, hydraulic conductivity, and clogging for geotextile filters be simultaneously satisfied? Coordinating the assessment of their seepage stability performance is crucial. To achieve this, sixteen soil-geotextile column hydraulic gradient ratio tests were conducted using four typical geotextiles. The seepage stability was evaluated based on hydraulic conductivity, stable hydraulic gradient ratio, and the washout of soil fines observed during the tests. Additionally, both the grain size of the soil and the constriction size of the geotextile were treated as random variables. Utilizing soil-water interaction theory, a retention assessment approach was proposed based on the probability of ineffective retention. The performance limits of retention were determined using data from eighty-five experimentally assessed soil-geotextile columns. Furthermore, a hydraulic conductivity assessment approach was developed, considering the partial clogging of the geotextile due to the formation of a bridging structure. The results indicate that the proposed design criterion surpasses previously published criteria in effectively distinguishing between clogging or blinding in ineffective and effective systems. It was found that polypropylene long-filament geotextiles with a high mass per unit area are particularly well-suited for use as filters.
张 昭1,2*,马 浩1,张远傲1,张 钊3,周子豪1,沈栎萱1. 基于水–土相互作用理论的土工织物渗透稳定性能判别方法及应用[J]. 岩石力学与工程学报, 2026, 45(2): 594-612.
ZHANG Zhao1, 2*, MA Hao1, ZHANG Yuan?ao1, ZHANG Zhao3, ZHOU Zihao1, SHEN Yuexuan1. An approach to assess the seepage stability of geotextile filters based on soil-water interaction theory and its application. , 2026, 45(2): 594-612.
[1] LIU Y J,YIN Z Y,YANG J. Micromechanical analysis of suffusion in gap-graded granular soils considering soil heterogeneity and non-uniform seepage flow[J]. Computers and Geotechnics,2023,159:(Suppl. C):1–19.
[2] HOLTZ R D,CHRISTOPHER B R,BERG R R. Geosynthetic design and construction guidelines–participant notebook[M]. Arlington:Federal Highway Administration,1998:31–44.
[3] PALMEIRA E M,SOUZA M V,SANTOS D S,et al. Study on the hydraulic properties of internally unstable soil-nonwoven geotextile systems:boundary values and preliminary estimates[J]. Geotextiles and Geomembranes,2025,53(2):588–606.
[4] AYDILEK A H. Filters and drains[C]// SHUKLA S K. Handbook of Geosynthetic Engineering:Geosynthetics and Their Applications. London:ICE Publishing,2012:67–87.
[5] ASTM. Standard test methods for determining apparent opening size of a Geotextile:ASTM D4751–20[S]. West Conshohocken:ASTM International,2020.
[6] LAFLEUR J. Selection of geotextiles to filter broadly graded cohesionless soils[J]. Geotextiles and Geomembranes,1999,17(5/6):299–312.
[7] AYDILEK A H,OGUZ S H,EDIL T B. Constriction size of geotextile filters[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):28–38.
[8] FANNIN R,VAID Y,SHI Y. Filtration behaviour of nonwoven geotextiles[J]. Canadian Geotechnical Journal,1994,31(4):555–563.
[9] GIROUD J P. Development of criteria for geotextile and granular filters[C]// The 9th International Conference on Geosynthetics. Guarujá,Brazil:[s. n.],2010:4 564.
[10] BHATIA S K,HUANG Q. Geotextile filters for internally stable/ unstable soils[J]. Geosynthetics International,1995,2(3):537–565.
[11] Canadian Geotechnical Society Staff. Geosynthetics[C]// Canadian Foundation Engineering Manual. Vancouver:BiTech,2006:351–352.
[12] CHRISTOPHER B R,HOLTZ R D. Geotextile engineering manual report No. FHWATS–86/203[R]. Washington:US Federal Highway Administration C,1985.
[13] LOUDIERE D,FAYOUX D,HOUIS J,et al. L’utilisation des geotextiles dans les barrages enterre[C]// Proceedings of 14th International Congress on Large Dams Rio de Janeiro Brazil. Paris:International Commission on Large Dams,1982:935–962.
[14] GIROUD J P. Granular filters and geotextile filters[C]// Proceedings of Geofilters?96. Tokyo:CiNii Research,1996:565–680.
[15] PALMEIRA E,GARDONI M. The influence of partial clogging and pressure on the behaviour of geotextiles in drainage systems[J]. Geosynthetics International,2000,7(4/6):403–431.
[16] PALMEIRA E M. A review on some factors influencing the behaviour of nonwoven geotextile filters[J]. Soils and Rocks,2020,43(3): 351–368.
[17] NISHIGATA T,FANNIN R J,VAID Y P. Blinding and clogging of a nonwoven geotextile[J]. Soils and Foundations,2000,40(4): 121–127.
[18] ASTM. ASTM D5101-12 Standard test method for measuring the filtration compatibility of soil-geotextile systems[S]. West Conshohocken:ASTM International,2017.
[19] KIM K H,PARK N H,KIM H J,et al. Modelling of hydraulic deterioration of geotextile filter in tunnel drainage system[J]. Geotextiles and Geomembranes,2020,48(2):210–219.
[20] WU S L,CHEN Y L,ZHU Y Y,et al. Study on filtration process of geotextile with LBM-DEM-DLVO coupling method[J]. Geotextiles and Geomembranes,2021,49(1):166–179.
[21] IBRAHIM A,MEGUID M A. CFD-DEM modeling of geotextile clogging in tunnel drainage systems[J]. Geotextiles and Geomembranes,2022,50(5):932–945.
[22] FATEMA N,BHATIA S K. Comparisons between geotextile pore sizes obtained from capillary flow and dry sieving tests[J]. Geotechnical Testing Journal,2020,43(4):853–876.
[23] CAZZUFFI D,IELO D,MANDAGLIO M C,et al. Recent developments in the design of geotextile filters[C]// Proceedings of the 2nd International GSI—Asia Geosynthetics Conference. Seoul:[s. n.],2015:1–12.
[24] MISZKOWSKA A,KODA E,KRZYWOSZ Z. Effect of the number of constrictions on the filtration behaviour of a soil-geotextile system[J]. Fibres and Textiles in Eastern Europe,2020,28(1): 87–92.
[25] MARKIEWICZ A,KIRAGA M,KODA E. Influence of physical clogging on filtration performance of soil-geotextile interaction[J]. Geosynthetics International,2022,29(4):356–368.
[26] MORACI N,MANDAGLIO M,BILARDI S. Soil/geotextile filter compatibility:a geometrical,experimental and micro-structural approach[J]. Geosynthetics International,2023,30(1):29–46.
[27] 毛昶熙. 渗流计算分析与控制[M]. 2版. 北京:中国水利水电出版社,2003:1–10.(MAO Changxi. Seepage calculation,analysis and control[M]. 2nd ed. Beijing:China Water and Power Press,2003: 1–10.(in Chinese))
[28] 张 昭. 水土作用机理的细–宏观多尺度研究[M]. 北京:科学出版社,2021:131–148.(ZHANG Zhao. Fine-macro multi-scale research on the mechanism of soil and water action[M]. Beijing:Science Press,2021:131–148.(in Chinese))
[29] 中华人民共和国国家标准编写组. GB/T 50145—2007 土的工程分类标准[S]. 北京:中国计划出版社,2007.(The National Standards Compilation Group of People?s Republic of China. GB/T 50145—2007 Engineering classification standard for soil[S]. Beijing:China Planning Press,2007.(in Chinese))
[30] 中华人民共和国国家标准编写组. GB/T 50123—2019 土工试验方法标准[S]. 北京:中国计划出版社,2019.(The National Standards Compilation Group of People?s Republic of China. GB/T 50123—2019 Standard for geotechnical test methods[S]. Beijing:China Planning Press,2019.(in Chinese))
[31] 张 钊. 基于水–土相互作用理论的粗粒土–反滤料系统渗透侵蚀机理及其滤土–排水性能评估方法[硕士学位论文][D]. 西安:西安理工大学,2024.(ZHANG Zhao. Mechanisms of seepage erosion of coarse grained soil-filter system and its performance evaluation based on the theory of interactions between water and soil[M. S. Thesis][D]. Xi?an:Xi?an University of Technology,2023.(in Chinese))
[32] SKEMPTON A,BROGAN J. Experiments on piping in sandy gravels[J]. Geotechnique,1994,44(3):449–460.
[33] KENNEY T C,LAU D. Internal stability of granular filters[J]. Canadian Geotechnical Journal,1985,22(2):215–225.
[34] KEZDI A. Increase of protective capacity of flood control dikes[R]. Budapest:Technical University,1969.
[35] SHERARD J L. Sinkholes in dams of coarse broadly graded soils[C]// Proceedings of the 13th Congress on large Dams. Paris:ICOLD,1979:25–35.
[36] KOERNER R. Geotextiles:from design to applications[M]. Cambridge:Woodhead Publishing,2016:3–12.
[37] WIEWEL B V,LAMOREE M. Geotextile composition,application and ecotoxicology-a review[J]. Journal of Hazardous Materials,2016,317:640–655.
[38] 中华人民共和国国家标准编写组. GB/T 17634—2019 土工布及其有关产品有效孔径的测定——湿筛法[S]. 北京:中国标准出版社,2019.(The National Standards Compilation Group of People?s Republic of China. GB/T 17634—2019 Determination of effective pore size of geotextiles and related products-wet sieve method[S]. Beijing:China Standards Press,2019.(in Chinese))
[39] 中华人民共和国国家标准编写组. GB/T 15789—2016 土工布及其有关产品无负荷时垂直渗透特性的测定[S]. 北京:中国标准出版社,2016.(The National Standards Compilation Group of People?s Republic of China. GB/T 15789—2016 Determination of vertical permeability characteristics of geotextiles and related products without load[S]. Beijing:China Standards Press,2016.(in Chinese))
[40] 中华人民共和国国家标准编写组. GB/T 30019—2013 碳纤维密度的测定[S]. 北京:中国标准出版社,2013.(The National Standards Compilation Group of People?s Republic of China. GB/T 30019—2013 Determination of carbon fiber density[S]. Beijing:China Standards Press,2013.(in Chinese))
[41] 中华人民共和国国家标准编写组. GB/T 29762—2013 碳纤维纤维直径和横截面积的测定[S]. 北京:中国标准出版社,2013.(The National Standards Compilation Group of People?s Republic of China. GB/T 29762—2013 Determination of carbon fiber diameter and cross-sectional area[S]. Beijing:China Standards Press,2013.(in Chinese))
[42] 中华人民共和国国家标准编写组. GB/T 13761.1—2022 土工合成材料规定压力下厚度的测定[S]. 北京:中国标准出版社,2022.(The National Standards Compilation Group of People?s Republic of China. GB/T 13761.1—2022 Geosynthetics-determination of thickness at specified pressures[S]. Beijing:China Standards Press,2022.(in Chinese))
[43] 赵俊豪,封 严,李洪振,等. 聚丙烯非织造土工布研究进展及应用[J]. 化工新型材料,2024,52(10):248–252.(ZHAO Junhao,FENG Yan,LI Hongzhen,et al. Research progress and application of polypropylene nonwoven geotextile[J]. New Types of Chemical Materials,2024,52(10):248–252.(in Chinese))
[44] WANG Y,DALLO Y A. On estimation of the constriction size distribution curve for cohesionless soils[J]. European Journal of Environmental and Civil Engineering,2014,18(6):683–698.
[45] 张 昭,张 钊,马 浩,等. 协同发挥滤土和排水减压效能的粗粒反滤料渗透稳定性能判别方法[J]. 土木工程学报,2025,https:// doi.org/10.15951/j.tmgcxb.24110914.(ZHANG Zhao,ZHANG Zhao,MA Hao,et al. Assessment approaches to exploit coordinately the performances of retention and hydraulic conductivity for seepage stability of coarse-grained filters[J]. China Civil Engineering Journal,2025,https://doi.org/10.15951/j.tmgcxb.24110914.(in Chinese))
[46] CAZZUFFI D,IELO D,MANDAGLIO M C,et al. Recent developments in the design of geotextile filters[C]// Proceedings of the 2nd International GSI—Asia Geosynthetics Conference. Seoul:[s. n.],2015:1–12.
[47] AYDILEK A H,D'HONDT D,HOLTZ R D. Comparative evaluation of geotextile pore sizes using bubble point test and image analysis[J]. Geotechnical Testing Journal,2007,30(3):173–181.
[48] GARDONI M G,PALMEIRA E M. Microstructure and pore characteristics of synthetic filters under confinement[J]. Geotechnique,2002,52(6):405–418.
[49] PALMEIRA E M,TREJOS GALVIS H L. Opening sizes and filtration behaviour of nonwoven geotextiles under confined and partial clogging conditions[J]. Geosynthetics International,2017,24(2):125–138.
[50] FATEMA N,BHATIA S K. Comparisons between geotextile pore sizes obtained from capillary flow and dry sieving tests[J]. Geotechnical Testing Journal,2020,43(4):853–876.
[51] GIROUD J. Quantification of geosynthetic behavior[J]. Geosynthetics International,2005,12(1):2–27.
[52] ÅBERG B. Void ratio of noncohesive soils and similar materials[J]. Journal of Geotechnical Engineering,1992,118(9):1 315–1 334.
[53] 祝良玉. 表征水在均质土中流动特性的理论模型与试验研究[硕士学位论文][D]. 西安:西安理工大学,2023.(ZHU Liangyu. Theoretical and experimental modelling water flow behavior in homogeneous soil[M. S. Thesis][D]. Xi?an:Xi?an University of Technology,2023.(in Chinese))
[54] HONG Y S,WU C S. Filtration behaviour of soil-nonwoven geotextile combinations subjected to various loads[J]. Geotextiles and Geomembranes,2011,29(2):102–115.
[55] KHAN M,DAWSON A,MARSHALL A. A dynamic gradient ratio test apparatus[J]. Geotextiles and Geomembranes,2018,46(6):782–789.
[56] PHOON K K. Reliability-based design in geotechnical engineering:computations and applications[M]. London:Taylor and Francis,2008:76–133.
[57] QIN S,GUO C Y,WU J W,et al. The effect of physical-chemical combined clogging on the area density and permeability of geotextile envelopes for subsurface drainage systems in arid regions[J]. Geotextiles and Geomembranes,2025,53(6):1 332–1 342.
[58] GEYCOECHEA J,MONTORO M A,GLATSTEIN D A,et al. Biological clogging of geotextiles under discontinuous fermentation scenario[J]. Geotextiles and Geomembranes,2025,53(1):188–202.
[59] SATHISHKUMAR G K,IBRAHIM M,MOHAMED AKHEEL M,et al. Synthesis and mechanical properties of natural fiber reinforced epoxy/polyester/polypropylene composites:a review[J]. Journal of Natural Fibers,2022,19(13):3 718–3 741.