[28] |
焦 斌,叶明星. BP神经网络隐层单元数确定方法[J]. 上海电机学院学报,2013,16(3):113-116.(JIAO Bin,YE Mingxing. Determination of hidden unit number in a BP neural network[J]. Journal of Shanghai Dianji University,2013,16(3):113-116.(in Chinese))
|
[17] |
BENGIO Y. Practical recommendations for gradient-based training of deep architectures[M]. Berlin:Springer,2012:437-478.
|
[5] |
YAGIZ S. A model for the prediction of tunnel boring machine performance[C]// Proceedings of 10th IAEG Congress. London:Lyell Collection,2006: 1-10.
|
[31] |
CARLISLE A,DOZIER G. An off-the-shelf PSO[C]// Proceedings of the workshop on particle swarm optimization. Indianapolis:[s. n.],2001:1-6.
|
[9] |
BRULAND A. Hard rock tunnel boring[Ph. D. Thesis][D]. Trondheim:Norwegian University of Science and Technology,1998.
|
[29] |
龚 安,张 敏. BP网络自适应学习率研究[J]. 科学技术与工程,2006,6(1):64-66.(GONG An,ZHANG Min. BP neural network with adaptive learning rate[J]. Science Technology and Engineering,2006,6(1):64-66.(in Chinese))
|
[2] |
刘泉声,刘建平,潘玉丛,等. 硬岩隧道掘进机性能预测模型研究进展[J]. 岩石力学与工程学报,2016,35(增1):2 766-2 786.(LIU Quansheng,LIU Jianping,PAN Yucong,et al. Research advances of tunnel boring machine performance prediction models for hard rock[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Supp.1):2 766-2 786.(in Chinese))
|
[10] |
HASSANPOUR J,ROSTAMI J,ZHAO J. A new hard rock TBM performance prediction model for project planning[J]. Tunnelling and Underground Space Technology,2011,26(5):595-603.
|
[12] |
熊 帆. 基于PSO-SVR算法的TBM掘进效率预测及围岩分级研究[硕士学位论文][D]. 西安:长安大学,2016.(XIONG Fan. Research of the TBM excavation efficiency prediction and rock classification based on the PSO-SVR algorithm[M. S. Thesis][D]. Xi¢an:Chang'an University,2016.(in Chinese))
|
[20] |
周 俊,陈璟华,刘国祥,等. 粒子群优化算法中惯性权重综述[J]. 广东电力,2013,26(7):6-12.(ZHOU Jun,CHEN Jinghua,LIU Guoxiang,et al. Summary on inertia weight in particle swarm optimization algorithm[J]. Guangdong Electric Power,2013,26(7):6-12.(in Chinese))
|
[22] |
宋振雷,吴雪松. 分组合作多智能体算法优化BP神经网络的权值以及阈值[J]. 电子测试,2010,(4):22-25.(SONG Zhenlei,WU Xuesong. Group cooperation Multi-agent optimize the weight and threshold of BP neural network[J]. Electronic Test,2010,(4):22-25.(in Chinese))
|
[24] |
罗 华. 基于线性回归和深度置信网络的TBM性能预测研究[硕士学位论文][D]. 杭州:浙江大学,2018.(LUO Hua. Application of linear regression analysis and deep belief network for performance prediction of TBM[M. S. Thesis][D]. Hangzhou:Zhejiang University,2018.(in Chinese))
|
[1] |
周 红,班树春,韩 颖. TBM最佳掘进工作参数研究与应用[J]. 水利建设与管理,2009,29(4):86-88.(ZHOU Hong,BAN Shuchun,HAN Ying. Research and application of the best TBM driving parameters[J]. Water Conservancy Construction and Management,2009,29(4):86-88.(in Chinese))
|
[4] |
周思阳,亢一澜,苏翠侠,等. 基于力学分析的TBM掘进总推力预测模型研究[J]. 机械工程学报,2016,52(20):76-82.(ZHOU Siyang,KANG Yilan,SU Cuixia,et al. Prediction of Thrust Force Requirements for TBMs Based on Mechanical Analysis[J]. Journal of Mechanical Engineering,2016,52(20):76-82.(in Chinese))
|
[6] |
刘泉声,时 凯,朱元广,等. TBM盘形滚刀破岩力计算模型研究[J]. 煤炭学报,2013,38(7):38-44.(LIU Quansheng,SHI Kai,ZHU Guangyuan,et al. Calculation model for rock disc cutting forces of TBM[J]. Journal of China coal society,2013,38(7):38-44.(in Chinese))
|
[7] |
王 健,王瑞睿,张欣欣,等. 基于RMR岩体分级系统的TBM掘进性能参数预测[J]. 隧道建设,2017,37(6):59-66.(WANG Jian,WANG Ruirui,ZHANG Xinxin,et al. Estimation of tbm performance parameters based on rock mass rating(RMR) system[J]. Tunnel Construction,2017,37(6):59-66.(in Chinese))
|
[11] |
ROSTAMI J,OZDEMIR L,NILSON B. Comparison between CSM and NTH hard rock TBM performance prediction models[C]// Proceedings of Annual Technical Meeting of the Institute of Shaft Drilling Technology. Las Vegas:[s. n.],1996:1-10.
|
[14] |
SALIMI A,ROSTAMI J,MOORMANN C,et al. Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs[J]. Tunnelling and Underground Space Technology,2016,58(5):236-246.
|
[16] |
SU J,WANG L G,ZHANG H L,et al. Application of fuzzy neural network in predicting the risk of rock burst[J]. Procedia Earth and Planetary Science,2009,1(1):536-543.
|
[19] |
ARUMUGAM M S,RAO M V C. On the improved performances of the particle swarm optimization algorithms with adaptive parameters,cross-over operators and root mean square(RMS) variants for computing optimal control of a class of hybrid systems[J]. Applied Soft Computing Journal,2008,8(1):324-336.
|
[3] |
ROSTAMI J. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure[Ph. D. Thesis][D]. Golden:Colorado School of Mines,1997.
|
[8] |
O'ROURKE J E,SPRINGER J E,COUDRAY S V. Geotechnical parameters and tunnel boring machine performance at Goodwin Tunnel,California[C]// 1st North American Rock Mechanics Symposium. Rotterdam:A. A. Balkema,1994:467-473.
|
[13] |
GE Y. Prediction of hard rock TBM penetration rate using least square support vector machine[J]. IFAC Proceedings Volumes,2013,46(13):347-352.
|
[15] |
温 森,赵延喜,杨圣奇,等. 基于MonteCarlo-BP神经网络TBM掘进速度预测[J]. 岩土力学,2009,30(10):3 127-3 132.(WEN Sen,ZHAO Yanxi,YANG Shengqi,et al. Prediction on penetration rate of TBM based on Monte Carlo-BP neural network[J]. Rock and Soil Mechanics,2009,30(10):3 127-3 132.(in Chinese))
|
[18] |
ZHOU J,LI X B,SHI X Z. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J]. Safety Science,2012,50(4):629-644.
|
[23] |
王 超,龚国芳,杨华勇,等. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报:自然科学版,2018,52(3):479-486.(WANG Chao,GONG Guofang,YANG Huayong,et al. NSVR based predictive analysis of cutterhead torque for hard rock TBM[J]. Journal of Zhejiang University:Engineering Science,2018,52(3):479-486.(in Chinese))
|
[25] |
沈花玉,王兆霞,高成耀,等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报,2008,24(5):15-17.(SHEN Huayu,WANG Zhaoxia,GAO Chengyao,et al. Determining the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology,2008,24(5):15-17.(in Chinese))
|
[30] |
张雯雰,王 刚,朱朝晖,等. 粒子群优化算法种群规模的选择[J]. 计算机系统应用,2010,19(5):125-128.(ZHANG Wenwen,WANG Gang,ZHU Zhaohui,et al. Population size selection of particle swarm optimizer algorithm[J]. Computer Systems and Applications,2010,19(5):125-128.(in Chinese))
|
[21] |
李明军,王均星,王亚洲. 基于改进粒子群优化算法和极限学习机的混凝土坝变形预测[J]. 天津大学学报:自然科学与工程技术版,2019,52(11):1 136-1 144.(LI Mingjun,WANG Junxing,WANG Yazhou. Deformation prediction of concrete dam based on improved swarm optimization algorithm and extreme learning machine[J]. Journal of Tianjin University:Science and Technology,2019,52(11):1 136-1 144.(in Chinese))
|
[26] |
JADID M N,FAIRBAIRN D R. The application of neural network techniques to structural analysis by implementing an adaptive finite-element mesh generation[J]. Artificial Intelligence for Engineering,Design,Analysis and Manufacturing,1994,8(3):177-191.
|
[27] |
张清良,李先明. 一种确定神经网络隐层节点数的新方法[J]. 吉首大学学报:自然科学版,2002,23(1):89-91.(ZHANG Qingliang,LI Xianming. A new method to determine hidden note number in neural network[J]. Journal of Jishou University:Natural Science,2002,23(1):89-91.(in Chinese))
|
[32] |
王维博,林 川,郑永康. 粒子群算法中参数的实验与分析[J]. 西华大学学报:自然科学版,2008,27(1):76-80.(WANG Weibo,LIN Chuan,ZHENG Yongkang. Experiment and analysis of parameters in particle swarm optimization[J]. Journal of Xihua University:Natural Science,2008,27(1):76-80.(in Chinese))
|