Abstract:In order to predict the rockburst tendency level more accurately,shear stress of surrounding rock,ratio of shear stress of surrounding rock and compressive strength,brittleness index and elastic deformation energy index are selected as the prediction indexes of rockburst tendency level according to the cause and characteristics of rockburst,and the improved CRITIC algorithm is used to weight the indicator samples. A new machine learning algorithm named as XGBoost is introduced to perform computational training on the samples,and a CRITIC-XGB model of rockburst tendency level prediction is established. The model is used to predict the rockburst tendency level of the collected rockburst instances,and the prediction results are compared with those by XGBoost,random forest(RF) and support vector machine(SVM) algorithms. The research results show that the convergence performance of the CRITIC-XGB prediction model is significantly improved compared to the single XGBoost model and that the CRITIC-XGB prediction model has higher prediction accuracy than the single XGBoost,RF and SVM algorithms. The developed model provides a new and reliable method for the prediction of rockburst tendency grades.
赵洪波. 岩爆分类的支持向量机方法[J]. 岩土力学,2005,26(4):642-644.(ZHAO Hongbo. Classification of rockburst using support vector machine[J]. Rock and Soil Mechanics,2005,26(4):642-644.(in Chinese))
[4]
PACK K H,LEE J G,ADISORN O. Seepage force in a drained circular tunnel:an analytical approach[J]. Canadian Geotechnical Journal,2008,45(3):432-436.
[14]
闫星宇,顾汉明,肖逸飞,等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探,2019,54(2):447-455. (YAN Xingyu,GU Hanming,XIAO Yifei,et al. Application of XGBoost algorithm in logging interpretation of tight sandstone gas reservoirs[J]. Petroleum Geophysical Prospecting,2019,54(2):447-455.(in Chinese))
[1]
许迎年,徐文胜,王元汉,等. 岩爆模拟试验及岩爆机制研究[J]. 岩石力学与工程学报,2002,21(10):1 462-1 466.(XU Yingnian,XU Wensheng,WANG Yuanhan,et al. Simulation testing and mechanism studies on rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(10):1 462-1 466.(in Chinese))
[3]
王元汉,李卧东,李启光,等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报,1998,17(5):493-501.(WANG Yuanhan,LI Wodong,LI Qiguang,et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(5):493-501.(in Chinese))
[6]
李绍红,王少阳,朱建东,等. 基于权重融合和云模型的岩爆倾向性预测研究[J]. 岩土工程学报,2018,40(6):1 075-1 083.(LI Shaohong,WANG Shaoyang,ZHU Jiandong,et al. Study on rockburst tendency prediction based on weight fusion and cloud model[J]. Chinese Journal of Geotechnical Engineering,2018,40(6):1 075-1 083.(in Chinese))
[7]
谢学斌,潘长良. 岩爆灾害的灰类白化权函数聚类预测方法[J]. 湖南大学学报:自然科学版,2007,34(8):16-20.(XIE Xuebin,PAN Changliang. Rockburst prediction method based on grey whitenization weight function cluster theory[J]. Journal of Hunan University:Natural Science,2007,34(8):16-20.(in Chinese))
[11]
DIAKOULAKI D,MAVROTAS G,PAPAYANNAKIS L. Determining objective weights in multiple criteria problems:The CRITIC method[J]. Computers and Operations Research,1995,22(7):763-770.
[13]
CHEN T,GUESTRIN C. XGBoost:a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco,USA:[s. n.],2016:85-97.
[16]
崔铁军,李莎莎,王来贵,等. 不同采深煤(岩)体岩爆过程模拟分析[J]. 计算力学学报,2017,34(3):336-343.(CUI Tiejun,LI Shasha,WANG Laigui,et al. Simulation analysis of rockburst process of coal(rock) body with different depths[J]. Chinese Journal of Computational Mechanics,2017,34(3):336-343.(in Chinese))
[2]
蔡嗣经,张禄华,周文略. 深井硬岩矿山岩爆灾害预测研究[J]. 中国安全生产科学技术,2005,1(5):17-20.(CAI Sijing,ZHANG Luhua,ZHOU Wenlue. Research on prediction of rock burst in deep hard-rock mines[J]. Journal of Safety Science and Technology,2005,1(5):17-20.(in Chinese))
[12]
王 瑛,蒋晓东,张 璐. 基于改进的CRITIC法和云模型的科技奖励评价研究[J]. 湖南大学学报:自然科学版,2014,41(4):118-124.(WANG Ying,JIANG Xiaodong,ZHANG Lu. Research on the evaluation of science and technological awards based on improved CRITIC method and cloud model[J]. Journal of Hunan University:Natural Science,2014,41(4):118-124.(in Chinese))
[10]
DONG L J,LI X B,PENG K. Prediction of rockburst classification using random forest[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):472-477.
[5]
袁继来,林建入,柯曾勇. 岩爆可能性估计的贝叶斯网络方法[C]// Proceedings of 2010 the 3rd International Conference on Computational Intelligence and Industrial Application. Piscataway,NJ:Institute of Electrical and Electronics Engineers,inc,2011:4.(YUAN Jilai,LIN Jianru,KE Cengyong. Bayesian network method for rockburst probability estimation[C]// Proceedings of 2010 the 3rd International Conference on Computational Intelligence and Industrial Application. Piscataway,NJ:Institute of Electrical and Electronics Engineers,inc,2011:4. (in Chinese))
[8]
陈海军,郦能惠,聂德新,等. 岩爆预测的人工神经网络模型[J].岩土工程学报,2002,24(2):229-232.(CHEN Haijun,ZHEN Nenghui,NIE Dexin,et al. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering,2002,24(2):229-232.(in Chinese))
[15]
江飞飞,周 辉,刘 畅,等. 地下金属矿山岩爆研究进展及预测与防治[J]. 岩石力学与工程学报,2019,38(5):956-972.(JIANG Feifei,ZHOU Hui,LIU Chang,et al. Research progress,prediction and prevention of rock burst in underground metal mines[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(5):956-972.(in Chinese))