[43] |
TAN M,LE Q. Efficientnetv2:Smaller models and faster training[C]// International Conference on Machine Learning. New York:PMLR,2021:10 096–10 106.
|
[28] |
REDMON J,FARHADI A. YOLOv3:an incremental improvement[J]. arXiv preprint arXiv,2018,http://doi.org/10.48550/arXiv.1804.02767.
|
[6] |
WEI F,YAO G,YANG Y,et al. Instance-level recognition and quantification for concrete surface bughole based on deep learning[J]. Automation in Construction,2019,107:102920.
|
[16] |
刘学增,桑运龙,苏云帆. 基于数字图像处理的隧道渗漏水病害检 测技术[J]. 岩石力学与工程学报,2012,31(增2):3 779–3 786. (LIU Xuezeng,SANG Yunlong,SU Yunfan. Tunnel leakage disease detection technology based on digital image processing[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(Supp.2):3 779–3 786.(in Chinese))
|
[18] |
KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc,2012:1–9.
|
[30] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1 440–1 448.
|
[40] |
YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv,2015,https://doi.org/10.48550/ arXiv.1511.07122.
|
[36] |
黄宏伟,李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报,2017,36(12):2 861–2 871.(HUANG Hongwei, LI Qingtong. Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2 861–2 871.(in Chinese))
|
[41] |
CHEN L C,PAPANDREOU G,KOKKINOS I,et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv preprint arXiv,2014,https://doi.org/10.48550/ arXiv.1412.7062.
|
[44] |
WOO S,PARK J,LEE J Y,et al. Cbam:Convolutional block attention module[C]// Proceedings of the European conference on computer vision(ECCV). Berlin:Springer,2018:3–19.
|
[46] |
RUSSELL B C,TORRALBA A,MURPHY K P,et al. LabelMe:a database and web-based tool for image annotation[J]. International Journal of Computer Vision,2008,77(1):157–173.
|
[1] |
ZHOU Z,DING H,MIAO L,et al. Predictive model for the surface settlement caused by the excavation of twin tunnels[J]. Tunnelling and Underground Space Technology,2021,114:104014.
|
[4] |
GONG C,DING W,SOGA K,et al. Failure mechanism of joint waterproofing in precast segmental tunnel linings[J]. Tunnelling and Underground Space Technology,2019,84:334–352.
|
[11] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62–66.
|
[14] |
ALEKSEYCHUK O. Detection of crack-like indications in digital radiography by global optimisation of a probabilistic estimation function[Ph. D. Thesis][D]. Zurich:Bundesanstalt für Materialforschung und-prüfung(BAM),2006.
|
[21] |
HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:770–778.
|
[24] |
SILVA W R L,LUCENA D S. Concrete cracks detection based on deep learning image classification[C]// Proceedings of the Multidisciplinary Digital Publishing Institute. Basel:MDPI,2018,2(8):489.
|
[31] |
REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1 137–1 149.
|
[34] |
ZHOU Z,ZHANG J,GONG C. Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network[J]. Computer-Aided Civil and Infrastructure Engineering,2022,37(6):762–780.
|
[7] |
HUANG H,LI Q,ZHANG D. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology,2018,77:166–176.
|
[9] |
刘宇飞,樊健生,聂建国,等. 结构表面裂缝数字图像法识别研究 综述与前景展望[J]. 土木工程学报,2021,54(6):79–98.(LIU Yufei,FAN Jiansheng,NIE Jianguo,et al. Review and prospect of digital-image-based crack detection of structure surface[J]. China Civil Engineering Journal,2021,54(6):79–98.(in Chinese))
|
[17] |
彭 斌,祝志恒,阳军生,等. 基于全景展开图像的隧道衬砌渗漏 水数字化识别方法研究[J]. 现代隧道技术,2019,56(3):31–37.(PENG Bin,ZHU Zhiheng,YANG Junsheng,et al. On digital identification of water leakage at tunnel lining based on the panoramic developed image[J]. Modern Tunnel Technology,2019,56(3):31–37.(in Chinese))
|
[19] |
SZEGEDY C,LIU W,JIA Y,et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:1–9.
|
[27] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]// Computer Vision and Pattern Recognition. Las Vegas,USA:IEEE,2016:779–788.
|
[8] |
鲍跃全,李 惠. 人工智能时代的土木工程[J]. 土木工程学报,2019,52(5):1–11.(BAO Yuequan,LI Hui. Artificial Intelligence for civil engineering[J] China Civil Engineering Journal,2019,52(5):1–11.(in Chinese))
|
[29] |
GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos,CA:IEEE Computer Society,2014:580–587.
|
[37] |
ZHANG L,SHEN J,ZHU B. A research on an improved Unet-based concrete crack detection algorithm[J]. Structural Health Monitoring,2021,20(4):1 864–1 879.
|
[39] |
CHOLLET F. Xception:Deep learning with depthwise separable convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1 251–1 258.
|
[26] |
REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii,USA:IEEE,2017:6 517–6 525.
|
[47] |
LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2 980–2 988.
|
[2] |
LEI M,ZHU B,GONG C,et al. Sealing performance of a precast tunnel gasketed joint under high hydrostatic pressures:Site investigation and detailed numerical modeling[J]. Tunnelling and Underground Space Technology,2021,115:104082.
|
[3] |
GONG C,DING W,XIE D. Parametric investigation on the sealant behavior of tunnel segmental joints under water pressurization[J]. Tunnelling and Underground Space Technology,2020,97:103231.
|
[25] |
LIU W,ANGUELOV D,ERHAN D,et al. Ssd:Single shotmultibox detector[C]// European conference on computer vision. Cham:Springer,2016:21–37.
|
[5] |
ZHANG J,LI F,ZENG L,et al. Effect of cushion and cover on moisture distribution in clay embankments in southern China[J]. Journal of Central South University,2020,27(7):1 893–1 906.
|
[10] |
WEI F,YAO G,YANG Y,et al. Instance-level recognition and quantification for concrete surface bughole based on deep learning[J]. Automation in Construction,2019,107:102920.
|
[12] |
马丽莎. 基于数字图像处理的路面裂缝识别方法研究[硕士学位论文][D]. 南京:东南大学,2018.(MA Lisha Research on pavement crack recognition method based on digital image processing[M. S. Thesis][D]. Nanjing:Southeast University,2018.(in Chinese))
|
[13] |
LI Q,ZOU Q,ZHANG D,et al. FoSA:F* seed-growing approach for crack-line detection from pavement images[J]. Image and Vision Computing,2011,29(12):861–872.
|
[15] |
FUJITA Y,MITANI Y,HAMAMOTO Y. A method for crack detection on a concrete structure[C]//18th International Conference on Pattern Recognition (ICPR'06). Piscataway:IEEE,2006:901–904.
|
[20] |
SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations. San Diego:ICLR,2015:1–14..
|
[22] |
薛亚东,李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J].湖 南大学学报:自然科学版,2018,45(3):100–109.(XUE Yadong,LI Yicheng. A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University:Natural Sciences,2018,45(3):100–109.(in Chinese))
|
[23] |
WANG W,HU W,WANG W,et al. Automated crack severity level detection and classification for ballastless track slab using deep convolutional neural network[J]. Automation in Construction,2021,124:103484.
|
[32] |
任 松,朱倩雯,涂歆玥,等. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报:工学版,2022,56(1):92–99.(REN Song,ZHU Qingwen,TU Xinyue,et al. Lining disease identification of highway tunnel based on deep learning[J]. Journal of ZheJiang University:Engineering Science,56(1):92–99.(in Chinese))
|
[33] |
DENG J,LU Y,LEE V C S. Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering,2020,35(4):373–388.
|
[35] |
FENG C,ZHANG H,LI Y,et al. Efficient real-time defect detection for spillway tunnel using deep learning[J]. Journal of Real-Time Image Processing,2021,18(6):1–11.
|
[38] |
CHEN L,ZHU Y,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision. Berlin,German:Springer,2018:801–818.
|
[42] |
CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv,2017,https://doi.org/10.48550/arXiv.1706.05587.
|
[45] |
TAN M,LE Q. Efficientnet:Rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning. New York:PMLR,2019:6 105–6 114.
|
[48] |
LIASHCHYNSKYI P,LIASHCHYNSKYI P. Grid search,random search,genetic algorithm:A big comparison for NAS[J]. arXiv preprint arXiv,2019,https://doi.org/10.48550/arXiv.1912.06059.
|