[3] |
DEPREZ M,DE KOCK T,DE SCHUTTER G,et al. A review on freeze-thaw action and weathering of rocks[J]. Earth-Science Reviews,2020,203:103143.
|
[2] |
WINKLER E M. Frost damage to stone and concrete:geological considerations[J]. Engineering Geology,1968,2(5):315–323.
|
[32] |
HUANG D,CEN D,MA G,et al. Step-path failure of rock slopes with intermittent joints[J]. Landslides,2015,12(5):911–926.
|
[1] |
彭建兵,崔 鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2 377–2 389.(PENG Jianbing,CUI Peng,ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2 377–2 389.(in Chinese))
|
[12] |
DRAEBING D,KRAUTBLATTER M,HOFFMANN T. Thermo-cryogenic controls of fracture kinematics in permafrost rockwalls[J]. Geophysical Research Letters,2017,44(8):3 535–3 544.
|
[6] |
沈 君,刘保国,陈 景,等. 辉绿岩裂隙注浆体力学特性试验研究[J]. 岩石力学与工程学报,2020,39(增1):2 804–2 817.(SHEN Jun,LIU Baoguo,CHEN Jing,et al. Experimental study on mechanical properties of diabase fracture-grouting mass[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Supp.1):2 804–2 817.(in Chinese))
|
[4] |
乔 趁,王 宇,宋正阳,等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学,2021,42(8):2 141–2 150.(QIAO Chen,WANG Yu,SONG Zhengyang,et al. Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite[J]. Rock and Soil Mechanics,2021,42(8):2 141–2 150.(in Chinese))
|
[5] |
MATSUOKA N,MURTON J. Frost weathering:recent advances and future directions[J]. Permafrost and Periglacial Processes,2008,19(2):195–210.
|
[7] |
刘泉声,黄诗冰,康永水,等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报,2015,34(3):452–471.(LIU Quansheng,HUANG Shibing,KANG Yongshui,et al. Advance and review on freezing-thawing damage of fractured rock[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(3):452–471.(in Chinese))
|
[9] |
TAN H,SONG Y J,GUO X X. Analysis of porosity,permeability,and anisotropy of sandstone in freeze-thaw environments using computed tomography and fractal theory[J]. Fractals,2021,29(8):2150239.
|
[16] |
DE ARGANDONA V G R,REY A R,CELORIO C,et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,1999,24(7):633–637.
|
[18] |
WANG Y,FENG W K,WANG H J,et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology,2020,177:103115.
|
[8] |
MCGREEVY J P,WHALLEY W B. Rock moisture content and frost weathering under natural and experimental conditions:a comparative discussion[J]. Arctic and Alpine Research,1985,17(3):337–346.
|
[10] |
KRAUTBLATTER M,FUNK D,GüNZEL F K. Why permafrost rocks become unstable:a rock-ice-mechanical model in time and space[J]. Earth Surface Processes and Landforms,2013,38(8):876–887.
|
[11] |
MAMOT P,WEBER S,SCHR?DER T,et al. A temperature- and stress-controlled failure criterion for ice-filled permafrost rock joints[J]. The Cryosphere,2018,12(10):3 333–3 353.
|
[13] |
黄诗冰,刘泉声,刘艳章,等. 低温热力耦合下岩体椭圆孔(裂)隙中冻胀力与冻胀开裂特征研究[J]. 岩土工程学报,2018,40(3):459–467.(HUANG Shibing,LIU Quansheng,LIU Yanzhang,et al. Frost heaving pressure and characteristics of frost cracking in elliptical cavity(crack) of rock mass under coupled thermal-mechanical condition at low temperature[J]. Chinese Journal of Geotechnical Engineering,2018,40(3):459–467.(in Chinese))
|
[15] |
李兆霖,王连国,姜崇扬,等. 基于实时CT扫描的岩石真三轴条件下三维破裂演化规律[J]. 煤炭学报,2021,46(3):937–949.(LI Zhaolin,WANG Lianguo,JIANG Chongyang,et al. Three-dimensional fracture evolution patterns of rocks under true triaxial conditions based on real-time CT scanning[J]. Journal of China Coal Society,2021,46(3):937–949.(in Chinese))
|
[17] |
宋勇军,杨慧敏,谭 皓,等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报,2021,40(8):1 512–1 524. (SONG Yongjun,YANG Huimin,TAN Hao,et al. Study on damage evolution characteristics of sandstone with different saturation in freeze-thaw environment[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1 512–1 524.(in Chinese))
|
[19] |
袁 媛,潘鹏志,赵善坤,等. 基于数字图像相关法的含填充裂隙大理岩单轴压缩破坏过程研究[J]. 岩石力学与工程学报,2018,37(2):339–351.(YUAN Yuan,PAN Pengzhi,ZHAO Shankun,et al. The failure process of marble with filled crack under uniaxial compression based on digital image correlation[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(2):339–351.(in Chinese))
|
[21] |
HALL S A,BORNERT M,DESRUES J,et al. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation[J]. Géotechnique,2010,60(5):315–322.
|
[22] |
BAY B K,SMITH T S,FYHRIE D P,et al. Digital volume correlation:three-dimensional strain mapping using X-ray tomography[J]. Experimental Mechanics,1999,39(3):217–226.
|
[24] |
LI C,KONG L,SHU R,et al. Dynamic three-dimensional imaging and digital volume correlation analysis to quantify shear bands in grus[J]. Mechanics of Materials,2020,151:103646.
|
[26] |
毛灵涛,袁则循,连秀云,等. 基于CT数字体相关法测量红砂岩单轴压缩内部三维应变场[J]. 岩石力学与工程学报,2015,34(1):21–30.(MAO Lingtao,YUAN Zexun,LIAN Xiuyun,et al. Measurement of 3D strain field in red stone sample under uniaxial compression with computer tomography and digital volume correlation method[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(1):21–30.(in Chinese))
|
[28] |
SHI H L,HOSDEZ J,ROUGELOT T,et al. Influences of structural anisotropy and heterogeneity on three-dimensional strain fields and cracking patterns of a clay-rich rock[J]. Acta Geotechnica,2021,16(7):2 175–2 187.
|
[14] |
DE KOCK T,BOONE M A,DE SCHRYVER T,et al. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling[J]. Environmental Science and Technology,2015,49(5):2 867–2 874.
|
[20] |
唐晓明,王鹤鸣,苏远大,等. 用孔隙、裂隙介质弹性波理论反演岩石孔隙分布特征[J]. 地球物理学报,2021,64(8):2 941–2 951. (TANG Xiaoming,WANG Heming,SU Yuanda,et al. Inversion for micro-pore structure distribution characteristics using cracked porous medium elastic wave theory[J]. Chinese Journal of Geophysics,2021,64(8):2 941–2 951.(in Chinese))
|
[23] |
SCHLüTER S,LEUTHER F,VOGLER S,et al. X-ray microtomography analysis of soil structure deformation caused by centrifugation[J]. Solid Earth,2016,7(1):129–140.
|
[25] |
MCBECK J A,CORDONNIER B,VINCIGUERRA S,et al. Volumetric and shear strain localization in Mt. Etna basalt[J]. Geophysical Research Letters,2019,46(5):2 425–2 433.
|
[27] |
邹 翔,潘 兵,王延珺,等. 高斯预滤波对数字体图像相关测量的影响[J]. 光学学报,2021,41(15):140–150.(ZOU Xiang,PAN Bing,WANG Yanjun,et al. Effect of Gaussian prefiltering on digital volume correlation measurement[J]. Acta Optica Sinica,2021,41(15):140–150.(in Chinese))
|
[29] |
MAO L,LIU H,LEI Y,et al. Evaluation of global and local digital volume correlation for measuring 3D deformation in rocks[J]. Rock Mechanics and Rock Engineering,2021,54(9):4 949–4 964.
|
[31] |
赵修成,赵晓彦,郭佳奇. 断续节理岩体声学力学特性试验研究[J].岩石力学与工程学报,2020,39(7):1 408–1 419.(ZHAO Xiucheng,ZHAO Xiaoyan,GUO Jiaqi. Experimental study on acoustic and mechanical properties of intermittent jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(7):1 408–1 419. (in Chinese))
|
[34] |
BAVEYE P C,LABA M,OTTEN W,et al. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data[J]. Geoderma,2010,157(1):51–63.
|
[36] |
RUECKERT D,SONODA L I,HAYES C,et al. Nonrigid registration using free-form deformations:application to breast MR images[J]. IEEE Transactions on Medical Imaging,1999,18(8):712–721.
|
[38] |
SHI H L,HOSDEZ J,ROUGELOT T,et al. Analysis of local creep strain field and cracking process in claystone by X-ray micro-tomography and digital volume correlation[J]. Rock Mechanics and Rock Engineering,2021,54(4):1 937–1 952.
|
[40] |
BOBET A,EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):863–888.
|
[42] |
ZHENG X,CORDONNIER B,MCBECK J,et al. Mixed‐mode strain localization generated by hydration reaction at crustal conditions[J]. Journal of Geophysical Research:Solid Earth,2019,124(5):4 507–4 522.
|
[30] |
VOLTOLINI M,RUTQVIST J,KNEAFSEY T. Coupling dynamic in situ X-ray micro-imaging and indentation:A novel approach to evaluate micromechanics applied to oil shale[J]. Fuel,2021,300:120987.
|
[33] |
SONG Y J,TAN H,YANG H M,et al. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography[J]. Engineering Geology,2021,294:106370.
|
[35] |
WANG D,ZENG F,WEI J,et al. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of Petroleum Science and Engineering,2021,196:108051.
|
[37] |
MAO L,LIU H,WANG Y,et al. 3-D strain estimation in sandstone using improved digital volumetric speckle photography algorithm[J]. International Journal of Rock Mechanics and Mining Sciences,2021,141:104736.
|
[39] |
RENARD F,MCBECK J,CORDONNIER B,et al. Dynamic in situ three-dimensional imaging and digital volume correlation analysis to quantify strain localization and fracture coalescence in sandstone[J]. Pure and Applied Geophysics,2019,176(3):1 083–1 115.
|
[41] |
BENNAI F,EL HACHEM C,ABAHRI K,et al. Microscopic hydric characterization of hemp concrete by X-ray microtomography and digital volume correlation[J]. Construction and Building Materials,2018,188:983–994.
|
[43] |
KIM T W,YUN W,KOVSCEK A R. Application of digital volume correlation to x-ray computed tomography images of shale[J]. Energy and Fuels,2020,34(11):13 636–13 649.
|