2025年8月8日 星期五
岩石力学与工程学报  2025, Vol. 44 Issue (4): 977-988    DOI: 10.3724/1000-6915.jrme.2024.0666
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
考虑场地相似性的小样本边坡可靠度分析
许  领,王文龙,赵腾远
(西安交通大学 人居环境与建筑工程学院,陕西 西安  710000)
Reliability analysis of slopes from sparse measurements considering sites similarity
XU Ling,WANG Wenlong,ZHAO Tengyuan
(School of Human Settlements and Civil Engineering,Xi?an Jiaotong University,Xi?an,Shaanxi 710000,China)
全文: PDF (1409 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对小样本条件下岩土试验数据统计不确定性大、岩土体参数概率分布不准确、边坡可靠度分析不合理的问题,通过综合考虑多个工程场地的相似特点,使用分层贝叶斯模型(HBM),充分借助相似工程场地的数据信息,并结合马尔科夫链蒙特卡洛(MCMC),实现小样本条件下目标场地岩土参数多维概率分布的合理刻画。采用陕北多个黄土工程场地的真实c,?数据,验证HBM方法对于小样本条件下构建岩土参数概率分布的有效性。并在此基础上,开展某黄土边坡的可靠度分析。结果表明:与独立参数模型(IPM)(不考虑相似工程场地数据信息)相比,HBM对应的边坡失效概率从11.6%降低到4.8%。此外,为了进一步验证HBM的相较传统方法的准确性,还通过大量模拟数据进行试验。结果表明:相比于IPM而言,HBM所得结果准确度能够提升33%~53%,不确定性降低19%~53%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
许 领
王文龙
赵腾远
关键词 土力学土体参数的概率分布贝叶斯方法分层贝叶斯模型可靠度理论    
Abstract:This paper proposes a hierarchical Bayesian method(HBM) combined with Markov Chain Monte Carlo (MCMC) to address the challenges of large statistical uncertainty in geotechnical experimental data,inaccurate probability distribution of geotechnical parameters,and unreasonable slope reliability analysis under small sample-sized conditions. The HBM comprehensively incorporates information from multiple similar geotechnical sites and integrates it with the limited measurements from the target site. This approach enables a more reasonable characterization of the probability distribution of geotechnical parameters under small sample conditions. The proposed method is validated using real datasets from several loess sites in northern Shaanxi Province,China. Based on these datasets,a reliability analysis of a loess slope is conducted to demonstrate the practical application of the HBM. The results indicate that,compared to the independent parameter model(IPM),which does not utilize information from similar geotechnical sites,the failure probability of the loess slope is reduced from 11.6% to 4.8% when using the HBM. Additionally,extensive numerical simulations are carried out to further verify the accuracy of the HBM compared to traditional methods. The results show that,compared to IPM,the HBM improves the accuracy of geotechnical statistics by 33% to 53% and reduces uncertainty by approximately 19% to 53%.
Key wordssoil mechanics    probability distribution of geotechnical parameters    Bayesian methods    hierarchical Bayesian model    reliability-based analysis
    
引用本文:   
许 领,王文龙,赵腾远. 考虑场地相似性的小样本边坡可靠度分析[J]. 岩石力学与工程学报, 2025, 44(4): 977-988.
XU Ling,WANG Wenlong,ZHAO Tengyuan. Reliability analysis of slopes from sparse measurements considering sites similarity. , 2025, 44(4): 977-988.
链接本文:  
https://rockmech.whrsm.ac.cn/CN/10.3724/1000-6915.jrme.2024.0666      或      https://rockmech.whrsm.ac.cn/CN/Y2025/V44/I4/977
版权所有 © 2005-2016 《岩石力学与工程学报》编辑部
   主办单位:中国岩石力学与工程学会 出版单位:科学出版社
地址:湖北省武汉市武昌小洪山(邮编:430071) 电话:(027)87199250 传真:(027)87199250 E-mail: rock@whrsm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:010-82358270,E-mail: support@magtech.com.cn
鄂公网安备 42010602003581号