[41] |
刘 慧,杨更社,贾海梁,等. 裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究[J]. 岩石力学与工程学报,2016,35(12): 2 516-2 524.(LIU Hui,YANG Gengshe,JIA Hailiang,et al. Experimental study on meso-structure of rock in the process of crack(pore) water freezing[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2 516-2 524.(in Chinese))
|
[42] |
HE Y Y,CAI Z Y,WANG F M,et al. Numerical investigation on slope stability influenced by seismic load and discontinuity with a continuous-discontinuous method[J]. Bulletin of Engineering Geology and the Environment,2023,82(70):1-26.
|
[43] |
SUN L J,LI C J,SHEN F M,et al. Reactivation mechanism and evolution characteristics of water softening-induced reservoir-reactivated landslides:a case study for the Three Gorges Reservoir Area,China[J]. Bulletin of Engineering Geology and the Environment,2023,82(66):1-23.
|
[1] |
黄 达,张晓景,顾东明. “三段式”岩石滑坡的锁固段破坏模式及演化机制[J]. 岩土工程学报,2018,40(9):1 601-1 609.(HUANG Da,ZHANG Xiaojing,GU Dongming. Failure pattern and evolution mechanism of locking section in rock slope with three-section landslide mode[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1 601-1 609.(in Chinese))
|
[2] |
黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433-454.(HUANG Runqiu. Large-scale landslides and their sliding mechanisms in china since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433-454.(in Chinese))
|
[3] |
王 闯,董金玉,刘汉东,等. 三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究[J]. 地球科学,2022,47(12):4 428-4 441.(WANG Chuang,DONG Jinyu,LIU Handong,et al. Shaking table model test on dynamic response characteristics and failure mechanism of three sections locked rock slope[J]. Earth Science,2022,47(12):4 428-4 441.(in Chinese))
|
[4] |
GUNZBURGER Y,MERRIEN-SOUKATCHOFF V,GUGLIELMI Y. Influence of daily surface temperature fluctuations on rock slope stability:case study of the Rochers de Valabres slope(France)[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42:331-349.
|
[5] |
吴 永,何思明,李新坡,等. 裂缝冰胀力作用下高寒危岩体失稳破坏机制[J]. 四川大学学报:工程科学版,2015,47(6):32-39.(WU Yong,HE Siming,LI Xinpo,et al. Collapse mechanism of extreme cold dangerous rock at high altitude under expansive force of crack ice[J]. Journal of Sichuan University:Engineering Science,2015,47(6):32-39.(in Chinese))
|
[6] |
乔国文,王运生,储 飞,等. 冻融风化边坡岩体破坏机制研究[J]. 工程地质学报,2015,23(3):469-476.(QIAO Guowen,WANG Yunsheng,CHU Fei,et al. Failure mechanism of slope rock mass due to freeze-thaw weathering[J]. Journal of Engineering Geology,2015,23(3):469-476.(in Chinese))
|
[7] |
SATOSHI AKAGAWA. Experimental study of frozen fringe characteristics[J]. Cold Regions Science and Technology,1988,15(3):209-223.
|
[8] |
黄诗冰,刘泉声,程爱平,等. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. 岩土力学,2018,39(1):78-84.(HUANG Shibing,LIU Quansheng,CHENG Aiping,et al. Preliminary experimental study of frost heaving pressure in crack and frost heaving propagation in rock mass under low temperature[J]. Rock and Soil Mechanics,2018,39(1):78-84.(in Chinese))
|
[9] |
WALDER J,HALLET B. A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin,1985,96(3):336-346.
|
[10] |
HUANG S B,LIU Q S,CHENG A P,et al. A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock[J]. International Journal of Rock Mechanics and Mining Sciences,2018,103:205-214.
|
[11] |
乔 趁,王 宇,宋正阳,等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学,2021,42(8):2 141-2 150.(QIAO Chen,WANG Yu,SONG Zhengyang,et al. Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite[J]. Rock and Soil Mechanics,2021,42(8):2 141- 2 150.(in Chinese))
|
[12] |
SHI G C,YANG X J,YU H C,et al. Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression[J]. Engineering Fracture Mechanics,2019,210:13-28.
|
[13] |
MOMENI A,ABDILOR Y,KHANLARI G R,et al. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J]. Bulletin of Engineering Geology and the Environment,2016,75(4):1 649-1 656.
|
[14] |
杨更社,申艳军,贾海梁,等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报,2018,37(3):545-563. (YANG Gengshe,SHEN Yanjun,JIA Hailiang,et al. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):545-563.(in Chinese))
|
[15] |
张慧梅,夏浩峻,杨更社,等. 冻融循环和围压对岩石物理力学性质影响的试验研究[J]. 煤炭学报,2018,43(2):441-448.(ZHANG Huimei,XIA Haojun,YANG Gengshe,et al. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks[J]. Journal of China Coal Society,2018,43(2):441-448.(in Chinese))
|
[16] |
李 平,唐旭海,刘泉声,等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报,2020,39(1):115-125.(LI Ping,TANG Xuhai,LIU Quansheng,et al. Experimental study on fracture characteristics and strength loss of intermittent fractured quasi-sandstone under freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):115-125.(in Chinese))
|
[17] |
薛 雷,秦四清,泮晓华,等. 锁固型斜坡失稳机制及其物理预测模型[J]. 工程地质学报,2018,26(1):179-192.(XUE Lei,QIN Siqing,PAN Xiaohua,et al. Mechanism and physical prediction model of instability of the locked-segment type slopes[J]. Journal of Engineering Geology,2018,26(1):179-192.(in Chinese))
|
[18] |
QIN C,CHIAN S C,WANG C. Kinematic analysis of pile behavior for improvement of slope stability in fractured and saturated Hoek-Brown rock masses[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2017,41(6):803-827.
|
[19] |
贾海梁,项 伟,申艳军,等. 冻融循环作用下岩石疲劳损伤计算中关键问题的讨论[J]. 岩石力学与工程学报,2017,36(2):335-346.(JIA Hailiang,XIANG Wei,SHEN Yanjun,et al. Discussion of the key issues within calculation of the fatigue damage of rocks subjected to freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):335-346.(in Chinese))
|
[20] |
LIU S,YANG G S,DONG X H,et al. Energy characteristics and damage constitutive model of frozen sandstone under triaxial compression[J]. Journal of Cold Regions Engineering,2022,36(1):1-12.
|
[21] |
YANG X,JIANG A,ZHENG S. Analysis of the effect of freeze-thaw cycles and creep characteristics on slope stability[J]. Arabian Journal of Geosciences,2021,14(11):1 033.
|
[22] |
GUGLIELMI Y,CAPPA F. Regional-scale relief evolution and large landslides:insights from geomechanical analyses in the Tinée Valley (southern French Alps)[J]. Geomorphology,2009,117(11):121- 129.
|
[23] |
LI C,ZHANG R T,ZHU J B,et al. Mechanism of progressive failure of a slope with a steep joint under the action of freezing and thawing:model test[J]. Journal of Mountain Science,2022,19(10):2 999- 3 012.
|
[24] |
罗路广,裴向军,黄润秋,等. 冰缘地区岩质斜坡冻融侵蚀时空分异特征与产屑率研究[J]. 工程地质学报,2020,28(6):1 319-1 328. (LUO Luguang,PEI Xiangjun,HUANG Runqiu,et al. Spatial- temporal differentiation characteristics and rate of freeze-thaw erosion of rock slopes in periglacial area[J]. Journal of Engineering Geology,2020,28(6):1 319-1 328.(in Chinese))
|
[25] |
GIRARD L,GRUBER S,WEBER S,et al. Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock[J]. Geophysical Research Letters,2013,40(9):1 748-1 753.
|
[26] |
黄 达,张晓景,顾东明. “三段式”岩石滑坡的锁固段破坏模式及演化机制[J]. 岩土工程学报,2018,40(9):1 601-1 609.(HUANG Da,ZHANG Xiaojing,GU Dongming. Failure pattern and evolution mechanism of locking section in rock slope with three-section landslide mode[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1 601-1 609.(in Chinese))
|
[27] |
PHILLIPS M,WOLTER A,LÜTHI R,et al. Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch(Eastern Swiss Alps),February 2014[J]. Earth Surface Processes and Landforms,2017,42(3):426-438.
|
[28] |
ZHOU J W,CUI P,HAO M H,Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet,China[J]. Landslides,2016,13(1):39-54.
|
[29] |
宋 彧. 相似模型试验原理[M]. 北京:人民交通出版社股份有限公司,2016:1-3.(SONG Yu. Est principle of similitude model[M]. Beijing: China Communications Press Co.,Ltd.,2016:1-3.(in Chinese))
|
[30] |
张欣欣,范宣梅,王文松,等. 高寒地区楔形体滑坡启动机制离心模型试验研究[J]. 岩石力学与工程学报,2023,42(5):1 202-1 213. (ZHANG Xinxin,FAN Xuanmei,WANG Wensong,et al. Initiation mechanism of wedge landslide in alpine regions by centrifugal model test[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1 202-1 213.(in Chinese))
|
[31] |
刘 昊,王 宇,王华建,等. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报,2022,30(4):1 122-1 131.(LIU Hao,WANG Yu,WANG Huajian,et al. Experimental study on frost heaving pressure evolution of rock ice cracks under freezing-thawing cycles[J]. Journal of Engineering Geology,2022,30(4):1 122-1 131. (in Chinese))
|
[32] |
AKAGAWA S,FUKUDA M. Frost heave mechanism in welded tuff[J]. Permafrost and Periglacial Processes,1991,2(4):301-309.
|
[33] |
MURTON J B,COUTARD J P,LAUTRIDOU J P,et al. Experimental design for a pilot study on bedrock weathering near the permafrost table[J]. Earth Surface Processes and Landforms,2000,25(12): 1 281-1 294.
|
[34] |
WILLIAM A C. Freezing and thawing of concrete mechanisms and control[J]. American Concrete Institute,1967:29-30.
|
[35] |
GILPIN R R. A model for the prediction of ice lensing and frost heave in soils[J]. Water Resources Research,1980,16(5):918-930.
|
[36] |
HALLET B,WALDER J S,STUBBS C W. Weathering by segregation ice growth in microcracks at sustained subzero temperatures:Verification from an experimental study using acoustic emissions[J]. Permafrost and Periglacial Processes,1991,2:283-300.
|
[37] |
DAVIDSON G P,NYE J F. A photoelastic study of ice pressure in rock cracks[J]. Cold Regions Science and Technology,1985,11(2):141-153.
|
[38] |
MATSUOKA N. Direct observation of frost wedging in alpine bedrock[J]. Earth Surface Processes and Landforms,2001,26(6): 601-614.
|
[39] |
MATSUOKA N. Microgelivation versus macrogelivation:towards bridging the gap between laboratory and field frost weathering[J]. Permafrost and Periglacial Processes,2001,12(3):299-313.
|
[40] |
LIU S,YANG G S,DONG X H,et al. Energy characteristics and damage constitutive model of frozen sandstone under triaxial compression[J]. Journal of Cold Regions Engineering,2022,36(1):1-12.
|