[1] |
MEURISSE A,MAKAYA C,WILLSC H,et al. Solar 3D printing of lunar regolith[J]. Acta Astronautica,2018,152:800-810.
|
[2] |
TAYLOR S L,JAKUS A E,KOUBE K D,et al. Intering of micro-trusses created by extrusion-3D-printing of lunar regolith inks[J]. Acta Astronautica,2018,143:1-8.
|
[3] |
PILEHVAR S,MARLIES A,ANDREAS E,et al. Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers[J]. Journal of Materials Research and Technology,2021,11:1 506-1 516.
|
[4] |
ISACHENKOV M,CHUGUNOVS,ISKANDER A,et al. Regolith- based additive manufacturing for sustainable development of lunar infrastructure—An overview[J]. Acta Astronautica,2021,180:650-678.
|
[5] |
OSIO-NORGAARD J,AUSTIN C H,GREGORY L. Whiting Sintering of 3D printable simulated lunar regolith magnesium oxychloride cements[J]. Acta Astronautica,2021,183:227-232.
|
[6] |
SONG L,XU J,FAN S Q,et al. Vacuum sintered lunar regolith simulant:Pore-forming and thermal conductivity[J]. Ceramics International,2019,45(3):3 627-3 633.
|
[7] |
ALTUN A A,ERTL F,MARECHAL M,et al. Additive manufacturing of lunar regolith structures[J]. Open Ceramics,2021,(5):100-158.
|
[8] |
ZHANG X,GHOLAMI S,MAHDIEH K,et al. Spark plasma sintering of a lunar regolith simulant:effects of parameters on microstructure evolution[J]. Phase Transformation,and Mechanical Properties,Ceramics International,2021,47(4):5 209-5 220.
|
[9] |
FERGUSON R E,SHAFIROVICH E. Aluminum- nickel combustion for joining lunar regolith ceramic tiles[J]. Combustion and Flame,2018,197:22-29.
|
[10] |
LIU M,TANG W Z,DUAN W Y,et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International,2019,45(5):5 829-5 836.
|
[11] |
OH K,CHEN T,KOU R,et al. Ultralow-binder- content thermoplastic composites based on lunar soil simulant[J]. Advances in Space Research,2020,66(9):2 245-2 250.
|
[12] |
BAASCH J,WINDISCH L,KOCH F,et al. Regolith as substitute mold material for aluminum casting on the Moon[J]. Acta Astronautica,2021,182:1-12.
|
[13] |
MOMI J,LEWIS T,ALBERINI F,et al. Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the Moon[J]. Advances in Space Research,2021,68:4 496- 4 504.
|
[14] |
LIAO H L,ZHU J J,CHANG S J,et al. Lunar regolith-AlSi10Mg composite fabricated by selective laser melting[J]. Vacuum,2021,187:110-122.
|
[15] |
YAO Z K,FENG J J,LIU H. Bioweathering improvement of lunar soil simulant improves the cultivated[J]. Acta Astronautica,2022,193:1-8.
|
[16] |
MILLS J N,KATZAROVA M,NORMAN J W. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization[J]. Advances in Space Research,2022,69(1):761-777.
|
[17] |
FARRIES K W,VISINTIN P,T SMITH S,et al. Sintered or melted regolith for lunar construction:state-of-the-art review and future research directions[J]. Construction and Building Materials,2021,296:1-31.
|
[18] |
LI Q L,ZHOU Q,LIU Y,et al. Two-billion-year-old volcanism on the Moon from Chang?e-5 basalts[J]. Nature,2021,600:54-80.
|
[19] |
GUO Z,LI C,LI Y,et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang?E-5 lunar soil:Implications for thermal effects during impacts[J]. Geophysical Research Letters,2021,49:97-123.
|