[1] |
邹才能,杨 智,何东博,等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575-587.(ZOU Caineng,YANG Zhi,HE Dongbo,et al. Theory,technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development,2018,45(4):575-587.(in Chinese))
|
[2] |
窦立荣,李大伟,温志新,等.全球油气资源评价历程及展望[J].石油学报,2022,43(8):1 035-1 048.(DOU Lirong,LI Dawei,WEN Zhixin,et al. History and outlook of global oil and gas resources evaluation[J]. Acta Petrolei Sinica,2022,43(8):1 035-1 048.(in Chinese))
|
[3] |
刘国恒,黄志龙,姜振学,等.鄂尔多斯盆地延长组湖相页岩纹层发育特征及储集意义[J].天然气地球科学,2015,26(3):408-417. (LIU Guoheng,HUANG Zhilong,JIANG Zhenxue,et al. The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin[J]. Natural Gas Geoscience,2015,26(3):408-417.(in Chinese))
|
[4] |
窦 伟,孙丕臣,欧阳哲远,等. 纹层发育程度对页岩储层的影响——以渤海湾盆地东营凹陷沙四上—沙三下亚段页岩为例[J]. 东北石油大学学报,2023,47(4):14-28.(DOU Wei,SUN Pichen,OUYANG Zheyuan,et al. Influence of the degree of grain layer development on shale reservoirs—A case study of shale in the Shasi—Shasanxia subsection of the Dongying Depression in the Bohai Bay Basin[J]. Journal of Northeast Petroleum University,2023,47(4):14-28.(in Chinese))
|
[5] |
王海柱,李根生,郑 永,等. 超临界CO2压裂技术现状与展望[J]. 石油学报,2020,41(1):116-126.(WANG Haizhu,LI Gensheng,ZHENG Yong,et al. Research status and prospects of supercritical CO2,fracturing technology[J]. Acta Petrolei Sinica,2020,41(1):116-126. (in Chinese))
|
[6] |
苏建政,李凤霞,周 彤. 页岩储层超临界二氧化碳压裂裂缝形态研究[J]. 石油与天然气地质,2019,40(3):616-625.(SU Jianzheng,LI Fengxia,ZHOU Tong. Study on fracture morphology of supercritical carbon dioxide fracturing in shale reservoirs[J]. Oil and Gas Geology,2019,40(3):616-625.(in Chinese))
|
[7] |
薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1 075-1 081.(XUE Huaqing,ZHOU Shangwen,JIANG Yali,et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development,2018,45(6):1 075-1 081.(in Chinese))
|
[8] |
曾凡辉,张 蔷,郭建春,等. 页岩水化及水锁解除机制[J]. 石油勘探与开发,2021,48(3):646-653.(ZENG Fanhui,ZHANG Qiang,GUO Jianchun,et al. Mechanisms of shale hydration and water block removal[J]. Petroleum Exploration and Development,2021,48(3):646-653.(in Chinese))
|
[9] |
PAN Y,HUI D,LUO P,et al. Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales[J]. Journal of CO2 Utilization,2018:28:152-167.
|
[10] |
左 罗,仲冠宇,蒋廷学,等. 页岩微观结构及力学特征变化规律研究[J]. 西南石油大学学报:自然科学版,2022,44(5):125-134. (ZUO Luo,ZHONG Guanyu,JIANG Tingxue,et al. A study on the law of microstructure changing and mechanical properties of shale[J]. Journal of Southwest Petroleum University:Science and Technology,2022,44(5):125-134.(in Chinese))
|
[11] |
SHI X,JIANG S,WANG Z X,et al. Application of nanoindentation technology for characterizing the mechanical properties of shale before and after supercritical CO2 fluid treatment[J]. Journal of CO2 Utilization,2020:37:158-172.
|
[12] |
LI S H,ZHANG S C,XING H L,et al. CO2-brine-rock interactions altering the mineralogical,physical,and mechanical properties of carbonate-rich shale oil reservoirs[J]. Energy,2022,256:124608.
|
[13] |
LYU Q,RANJITH P,LONG X,et al. Experimental investigation of mechanical properties of black shales after CO2-Water-Rock interaction[J]. Materials,2016,9:663.
|
[14] |
汤积仁,卢义玉,陈钰婷,等. 超临界CO2作用下页岩力学特性损伤的试验研究[J]. 岩土力学,2018,39(3):797-802.(TANG Jiren,LU Yiyu,CHEN Yuting,et al. Experimental study of damage of shale mechanical properties under supercritical CO2[J]. Rock and Soil Mechanics,2018,39(3):797-802.(in Chinese))
|
[15] |
白 冰,陈 勉,金 衍. 超临界CO2吸附效应对页岩地层井壁稳定影响研究[J]. 岩石力学与工程学报,2023,42(增1):3 508-3 518. (BAI Bing,CHEN Mian,JIN Yan. Study on the influence of supercritical carbon dioxide adsorption effect on wellbore stability of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Supp.1):3 508-3 518.(in Chinese))
|
[16] |
田时锋,周军平,鲜学福,等. 超临界CO2作用下页岩抗拉强度的变化规律[J]. 煤炭学报,2023,48(7):2 728-2 736.(TIAN Shifeng,ZHOU Junping,XIAN Xuefu,et al. Effect of supercritical CO2 on alteration of tensile strength of shale[J]. Journal of China Coal Society,2023,48(7):2 728-2 736.(in Chinese))
|
[17] |
ZHANG Y,ZAHNG Z,ARIF M,et al. Carbonate rock mechanical response to CO2 flooding evaluated by a combined X-ray computed tomography-DEM method[J]. Journal of Natural Gas Science and Engineering,2020,84:103675.
|
[18] |
AN Q,ZHANG Q,LI X,et al. Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2[J]. Energy,2022,259:125026.
|
[19] |
AXEN N,KAHLMAN L,HUTCHINGS I M. Correlations between tangential force and damage mechanisms in the scratch testing of ceramics[J]. Tribology International,1997,30(7):467-474.
|
[20] |
CONSIGLIO R,RANDALL N X,BELLATON B,et al. The nano-scratch tester(NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films[J]. Thin Solid Films,1998,332(1/2):151-156.
|
[21] |
BULL S J,BERASETEGUI E G. An overview of the potential of quantitative coating adhesion measurement by scratch testing[J]. Tribology International,2006,39(2):99-114.
|
[22] |
BULL S J. Failure mode maps in the thin film scratch adhesion test[J]. Tribology International,1997,30(7):491-498.
|
[23] |
BEAKE B D,VISHNYAKOV V M,HARRIS A J. Nano-scratch testing of(Ti,Fe) Nx thin films on silicon[J]. Surface and Coatings Technology,2017,309:671-679.
|
[24] |
SÉRGIO GRAÇA,ROGÉRIO COLAÇO,RUI V. Micro-to-nano indentation and scratch hardness in the Ni-Co system:depth dependence and implications for tribological behavior[J]. Tribology Letters,2008,31(3):177-185.
|
[25] |
KOJIO K,KAJIWARA T,YAMAMOTO S,et al. Direct visualization of the molecular orientation and microstructure of glassy transparent polymers after the scratch test based on optical microscopy and X-ray scattering[J]. Polymer,2019,181,121773.
|
[26] |
AMAN M,ESPINOZA D N,ILGEN A G,et al. CO2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing[J]. Greenhouse Gases:Science and Technology,2018,8,133-149.
|
[27] |
KABIR P,ULM F J,AKONO A T. Rate-independent fracture toughness of gray and black kerogen-rich shales[J]. Acta Geotechnica,2017,12(6):1 207-1 227.
|
[28] |
AKONO A T,ULM F J,BAZANT Z P. Discussion:Strength-to-fracture scaling in scratching[J]. Engineering Fracture Mechanics,2014,119:21-28.
|
[29] |
AkONO A T,ULM F J. Microscopic toughness of viscous solids via scratching:from amorphous polymers to gas shale[J]. Journal of Nano mechanics and Micromechanics,2017,7(3):04017009.
|
[30] |
KATARUKA A,MENDU K,OKEOGHENE O,et al. Microscopic assessment of bone toughness using scratch tests[J]. Bone Reports,2017,6:17-25.
|
[31] |
AKONO A T. Energetic size effect law at the microscopic scale: application to progressive-load scratch testing[J]. Journal of Nano Mechanics and Micromechanics,2016,6(2):04016001.
|
[32] |
刘 合,孟思炜,王素玲,等. 古龙页岩力学特征与裂缝扩展机制[J]. 石油与天然气地质,2023,44(4):820-828.(LIU He,MENG Siwei,WANG Suling,et al. Mechanical characteristics and fracture propagation mechanisms of the Gulong shale[J]. Oil and Gas Geology,2023,44(4):820-828.(in Chinese))
|
[33] |
SCHEI G,FJÆR E,DETOURNAY E,et al. The scratch test: an attractive technique for determining strength and elastic properties of sedimentary rocks[C]// Proceedings of SPE Annual Technical Conference and Exhibition. [S. l.]:[s. n.],2000:1-4.
|
[34] |
QIN C,JIANG Y,ZHOU J,et al. Effect of supercritical CO2 extraction on CO2/CH4 competitive adsorption in Yanchang shale[J]. Chemical Engineering Journal,2021,412:128701.
|
[35] |
LUO X,REN X,WANG S. Supercritical CO2-water-shale interactions and their effects on element mobilization and shale pore structure during stimulation[J]. International Journal of Coal Geology,2019,202:109-127.
|
[36] |
敖 翔,卢义玉,汤积仁,等. 页岩吸附二氧化碳变形特性试验研究[J]. 煤炭学报,2015,40(12):2 893-2 899.(AO Xiang,LU Yiyu,TANG Jiren,et al.Deformation properties of shale by sorbing carbon dioxide[J]. Journal of China Coal Society,2015,40(12):2 893-2 899.(in Chinese))
|
[37] |
HARRISON A L,DIPPLE G M,POWER I M,et al. The impact of evolving mineral-water-gas interfacial areas on mineral-fluid reaction rates in unsaturated porous media[J]. Chemical Geology,2016,421:65-80.
|
[38] |
ESPINOZA W F,ZHANG F S,DAI S. Impacts of temperature on the mechanical properties of Longmaxi shale outcrops using instrumented nanoindentation[J]. Geomechanics for Energy and the Environment,2022,30:100348.
|
[39] |
卢运虎,杨典儒,金 衍,等. 深层龙马溪组页岩气藏黏土矿物水岩作用微观机制[J]. 地球化学,2020,49(1):76-83.(LU Yunhu,YANG Dianru,JIN Yan,et al. Micro-mechanism of water-rock interaction of clay minerals in a deep shale gas reservoir in the Longmaxi Formation[J]. Geochimica,2020,49(1):76-83.(in Chinese))
|
[40] |
李 宁,金之钧,张士诚,等. 水/超临界二氧化碳作用下的页岩微观力学特性[J]. 石油勘探与开发,2023,50(4):872-882.(LI Ning,JIN Zhijun,ZHANG Shicheng,et al. Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction[J]. Petroleum Exploration and Development,2023,50(4):872-882.(in Chinese))
|