王家山矿急倾斜煤层长壁开采覆岩破断机制及强矿压控制方法
张基伟
(北京科技大学 土木与资源工程学院,北京 100083)
The fracture mechanism of main roof stratum and strong mine pressure control method in long wall mining of steeply inclined coal seam in Wangjiashan colliery
ZHANG Jiwei
(School of Resource and Civil Engineering,University of Science and Technology Beijing,Beijing 100083,China)
摘要 以王家山煤矿工程地质条件与强矿压显现特征为背景,利用室内试验、理论分析、数值试验和现场观测等综合研究手段,研究了急倾斜煤层开采覆岩初次、周期顶板破断机制,揭示了煤、岩非对称应力分布特征与演化规律,提出了强矿压显现危险区域预测与定向弹性能释放强矿压控制方法。取得的主要研究成果有:
(1) 基于弹性力学理论,建立了横纵荷载作用下急倾斜煤层基本顶的薄板力学模型,分析了基本顶上、下板面的应力分布特征,获得了基本顶断裂线发育轨迹与破坏区演化规律,提出了急倾斜煤层基本顶的初次破断“V-Y”型断裂模式。研究表明,急倾斜煤层基本顶初次断裂的空间顺序为“中上部→中下部→上部→下部”。结合数值模拟、现场监测等手段,验证了基本顶初次断裂过程中采场围岩应力场分布及矿压显现具有时序性和非对称特征。
(2) 基于弹性力学理论,建立了急倾斜综放面推进过程中基本顶由小三角形悬板→大三角形悬板→斜梯形板转化的薄板力学模型,计算出3种形状基本顶的上、下板面的应力分布,揭示了断裂线发育轨迹与破坏区演化过程,阐明了急倾斜煤层基本顶周期破断的“四边形”型断裂模式。研究表明,急倾斜煤层基本顶周期断裂的空间顺序为“中下部→中上部→上部→下部”。结合数值模拟、现场监测等手段,验证了基本顶周期断裂过程中采场围岩应力场分布及矿压显现具有时序性和非对称特征。
(3) 采用离散元数值模拟及现场实测等手段,揭示了王家山矿急倾斜特厚煤层(群)回采煤、岩应力分布特征与演化规律。发现了急倾斜综放工作面煤体支承压力动压区呈“圆弧形”分布,稳压区呈“矩形”分布的非对称分布特征。利用离散元数值模型证明了区段工作面顶板周期断裂同样符合“四边形”周期断裂模式。
(4) 以王家山煤矿工程地质条件与强矿压显现特征为背景,采用综合指数法、超静定梁理论、统计学理论等方法,提出了“井田→工作面→近场→定点”层次化危险区预测与关键部位监测方法,并针对不同危险等级制定了相应的强矿压防治方案。
(5) 采用数值模拟、现场实测等手段,研究了王家山矿急倾斜煤层开采强矿压致灾机制,即上部基本顶在侧支承压力与顶板断裂的综合影响下,可能发生混合型强矿压。中部基本顶断裂可能发生诱发型强矿压,下部基本顶较稳定易发生能量聚集型强矿压。
(6) 发现了超前顶板重点卸压区域的弹性能释放后由能量转移与积聚而形成“人”字型能量分叉形态,构成了顶板防冲卸压后的主要来压路径。据此提出了急倾斜特厚煤层弹性能定向释放强矿压控制方法,将方法分为悬顶能量释放与次生能量消耗2个阶段,并分析了各阶段的作用。通过顶板动态监测与地音监测检验,证明此方法能够在有效的缩短悬顶面积,减小工作面顶板压力与来压步距的同时,降低由顶板卸压造成次生灾害的可能。
关键词 :
采矿工程 ,
急倾斜煤层 ,
覆岩断裂机制 ,
倾斜悬顶结构 ,
&ldquo ,
人&rdquo ,
字型能量分叉 ,
强矿压控制方法
[1]
崔哲森1,柴青平2,刘志龙3,王雪松4,袁增森1,徐振洋1,5,6. 爆堆块度分布对孔隙结构分形特征影响研究 [J]. 岩石力学与工程学报, 2025, 44(S1): 134-145.
[2]
卢运虎1,2,张樱曦2,金 衍1,2,周 波2,3. 考虑钻井液封堵效应的破碎性地层井壁坍塌模型 [J]. 岩石力学与工程学报, 2025, 44(S1): 10-20.
[3]
张 翔1,朱斯陶1,2,刘金海1,姜福兴1,李士栋3,周 涛3,孔 震3,曲效成4. 巨厚表土–锯齿断层煤柱组合结构联动失稳机制研究 [J]. 岩石力学与工程学报, 2025, 44(9): 2391-2407.
[4]
唐 朝1,2,张遵国1,3,陈 毅1,2,张宏虎1,2,陈永强1,2,钱清侠1. 基于三重耦合效应的煤体吸附CO2变形解耦分析方法 [J]. 岩石力学与工程学报, 2025, 44(9): 2432-2443.
[5]
朱广安,王 铱,徐自豪. 基于声发射信号处理的含水煤体当量钻屑量反演试验研究 [J]. 岩石力学与工程学报, 2025, 44(8): 2040-2054.
[6]
马衍坤1,2,3,刘洪杰1,2,3,赵敖寒1,2,3,马登云1,2,3,王谷雨1,2,3,张 曦1,2,3马衍坤1,2,3,刘洪杰1,2,3,赵敖寒1,2,3. 基于DIC顶板导向水力压裂缝网跨界面扩展应变场响应试验研究 [J]. 岩石力学与工程学报, 2025, 44(8): 2007-2018.
[7]
周 楠1,2,张吉雄1,3,许健飞1,2,张羽者1,2,李泽君1,2. 西部矿区含水层下采动空间矸石注浆间隔充填岩层控制机制研究 [J]. 岩石力学与工程学报, 2025, 44(7): 1736-1751.
[8]
白 云1,高 峰1,钮 月1,2,罗 宁3,张志镇3,苏善杰4,滕 腾5,侯 鹏6. 基于损伤–能量协同演化的煤动态破坏剧烈程度评价方法与分级标准研究 [J]. 岩石力学与工程学报, 2025, 44(7): 1869-1884.
[9]
孙书伟1,胡家冰1,刘 流1,李 圆1,李国君2. 抚顺西露天矿边坡岩体结构与灾害预报模型研究 [J]. 岩石力学与工程学报, 2025, 44(7): 1695-1708.
[10]
徐佑林1,吴少康2,周 波1,3,郑 伟1,吴旭坤4,周 泽1,陈志松3,张际涛5,李 彬3,严 红6,张传玖7. 强动压破碎软岩巷道再造多重承载结构全空间协同支护技术研究 [J]. 岩石力学与工程学报, 2025, 44(7): 1720-1735.
[11]
赵同彬1,2,郭 磊1,2,尹延春1,2,肖亚勋3,李世航1,2,高子童1,2. 不同种类煤岩碎块弹射特征及冲击动能指数测试 [J]. 岩石力学与工程学报, 2025, 44(7): 1709-1719.
[12]
孟庆彬1,2,张 烜2,葛政宇2,韩 绪1,安刚健1. 深部巷道锚注支护结构时效特性理论分析 [J]. 岩石力学与工程学报, 2025, 44(6): 1420-1437.
[13]
孙书伟1,杨肇熙1,贾培智1,王晓龙1,李国君2. 煤矿地下采空区沉陷诱发边坡破坏机制研究 [J]. 岩石力学与工程学报, 2025, 44(6): 1405-1419.
[14]
许慧聪1,2,来兴平1,2,单鹏飞1,2,郭中安3,薛 珂3,闫钟铭2,4,王华川1,5,徐 港2,孟 政2. 沟谷区浅埋煤层矿压显现时空特征辨识及预测方法研究 [J]. 岩石力学与工程学报, 2025, 44(6): 1450-1465.
[15]
刘国磊1,梁文昭2,3,马秋峰1,王泽东4,曲效成5. 深部煤巷高三向应力差异区冲击失稳机制 [J]. 岩石力学与工程学报, 2025, 44(4): 797-809.