2025年7月24日 星期四
岩石力学与工程学报  2025, Vol. 44 Issue (6): 1405-1419    DOI: 10.3724/1000-6915.jrme.2024.0671
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
煤矿地下采空区沉陷诱发边坡破坏机制研究
孙书伟1,杨肇熙1,贾培智1,王晓龙1,李国君2
(1. 中国矿业大学(北京) 能源与矿业学院,北京  100083;2. 中国矿业大学 安全工程学院,江苏 徐州  221116)
Study on failure mechanism of slopes induced by the underground coal mining subsidence
SUN Shuwei1, YANG Zhaoxi1, JIA Peizhi1, WANG Xiaolong1, LI Guojun2
(1. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
2. School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China)
全文: PDF (6249 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 地下采空区引起上覆岩层移动与应力场变化,诱发边坡岩体性能劣化,极易造成边坡滑坡等灾害事故。运用底摩擦试验与数值模拟手段,对不同地下采空区条件下采场–边坡系统的破坏过程进行对比,在此基础上分析煤矿采空区沉陷影响下边坡的破坏模式与力学机制。研究结果表明:(1)地下采空区沉陷对边坡的影响主要表现在降低边坡岩体的完整性和强度、改变边坡岩层倾角、导致坡面张拉效应增强并产生开裂、改变边坡的几何形态等方面。(2)采空区上覆岩层的破断机制为重力作用下岩层向地下采空区产生的逐层弯曲和垮塌,破断岩层的破裂面形态在深部以采空区中心线为对称轴呈雁列式发育,在浅部则受边坡影响与边坡后部张拉裂缝贯通发育。(3)地下采空区诱发上覆边坡破坏机制分为挤压型和牵引型2种,挤压型边坡破坏通常发生在采空区沉陷下部边坡,变形破坏过程分为地下采空区上覆岩层垮塌、沉陷挤压和边坡滑移等阶段;牵引型边坡破坏通常发生在采空区沉陷上部边坡,变形破坏过程分为地下采空区上覆岩层垮塌、牵引拉裂和边坡滑动破坏等阶段。(4)地质结构对采空区上覆边坡的失稳和破坏过程有显著影响,当边坡岩层为顺倾产状时,破断岩层两侧的破裂面形态会向顺坡方向发生偏转,采空区垮塌沉陷诱发的边坡变形破坏范围较大;当岩层为反倾斜产状时,相同位置和埋深的采空区对边坡的位移影响明显变小。研究成果可为采煤沉陷区边坡灾害识别与露天转地下开采安全防范提供借鉴。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙书伟1
杨肇熙1
贾培智1
王晓龙1
李国君2
关键词 采矿工程煤矿地下采空区露天转地下开采边坡破坏底摩擦试验数值模拟    
Abstract:The underground mine workings induce movements in the overlying rock layers and alter stress fields, leading to the deterioration of rock properties in slopes, which can easily result in disasters such as slope landslides. This study compares the failure process of the underground mine-slope system under various underground mining conditions through bottom friction tests and numerical simulations. Consequently, the failure modes and deformation mechanisms of the slope influenced by underground coal mining subsidence were analyzed. The findings are as follows: (1) The effects of underground coal mining subsidence on slopes primarily include a reduction in the integrity and strength of the slope rock mass, a change in the inclination angle of the slope rock layer, an enhancement of the tensile effects on the slope surface resulting in cracking, and a modification of the geometric shape of the slope. (2) The fracture mechanism of the overlying rock strata involves the gradual bending and collapse of the strata towards the underground mine workings due to gravitational forces. The fracture surface of the rock strata develops in a geese-like pattern, with the centerline of the underground mine workings serving as the axis of symmetry in the deeper field, and is connected to the tensile fractures on the slope surface in the near-slope field. (3) The mechanisms of slope failure induced by underground mine workings can be categorized into two types: compression-type and traction-type. Compression-type slope failure typically occurs in the lower slope of mining subsidence, and the process can be divided into stages such as overlying rock collapse, subsidence compression, and slope sliding. Conversely, traction-type slope failure usually occurs on the upper slope of mining subsidence, with the process divided into stages including the collapse of overlying rock strata, traction and tearing, and slope sliding. (4) The geological structure significantly influences the instability and failure processes of the overlying slope. When the rock layers of the slope are oriented in a bedding fashion, the fracture surface patterns on both sides of the overlying rock layer rotate towards the dip direction, resulting in a relatively large deformation and failure range of the slope induced by mining subsidence. In contrast, when the rock strata are in a reverse inclined orientation, the effect of underground mine workings at the same position and burial depth on the slope displacement is significantly reduced. The research results provide valuable insights for identifying slope disasters in coal mining subsidence areas and for ensuring safety in open-pit to underground mining transition projects.
Key wordsmining engineering    underground coal mine workings    open-pit-underground mining transition    slope failure    base friction test    numerical simulation
    
引用本文:   
孙书伟1,杨肇熙1,贾培智1,王晓龙1,李国君2. 煤矿地下采空区沉陷诱发边坡破坏机制研究[J]. 岩石力学与工程学报, 2025, 44(6): 1405-1419.
SUN Shuwei1, YANG Zhaoxi1, JIA Peizhi1, WANG Xiaolong1, LI Guojun2. Study on failure mechanism of slopes induced by the underground coal mining subsidence. , 2025, 44(6): 1405-1419.
链接本文:  
https://rockmech.whrsm.ac.cn/CN/10.3724/1000-6915.jrme.2024.0671      或      https://rockmech.whrsm.ac.cn/CN/Y2025/V44/I6/1405
版权所有 © 2005-2016 《岩石力学与工程学报》编辑部
   主办单位:中国岩石力学与工程学会 出版单位:科学出版社
地址:湖北省武汉市武昌小洪山(邮编:430071) 电话:(027)87199250 传真:(027)87199250 E-mail: rock@whrsm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:010-82358270,E-mail: support@magtech.com.cn
鄂公网安备 42010602003581号