[40] |
ZHOU Z,CAI X,CHEN L,et al. Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone[J]. Engineering Geology,2017,220(1):1-12.
|
[42] |
周 磊,朱哲明,董玉清,等. 砂岩在不同应变率条件下的劈裂破坏特性[J]. 中南大学学报:自然科学版,2021,52(2):555-567.(ZHOU Lei,ZHU Zheming,DONG Yuqing,et al. Fracture properties of sandstone materials at different strain rates[J]. Journal of Central South University:Science and Technology,2021,52(2):555-567.(in Chinese))
|
[44] |
JAMSHIDI A,NIKUDEL M R,KHAMEHCHIYAN M. Evaluation of the durability of Gerdoee travertine after freeze-thaw cycles in fresh water and sodium sulfate solution by decay function models[J]. Engineering Geology,2016,202(1):36-43.
|
[46] |
平 琦,骆 轩,马芹永,等. 冲击载荷作用下砂岩试件破碎能耗特征[J]. 岩石力学与工程学报,2015,34(增2):4 197-4 203.(PING Qi,LUO Xuan,MA Qinyong,et al. Broken energy dissipation characteristics of sandstone specimens under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Supp.2):4 197-4 203.(in Chinese))
|
[3] |
MUTLUTÜRK M,ALTINDAG R,TÜRK G. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2):237-244.
|
[14] |
PARK J,HYUN C U,PARK H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J]. Bulletin of Engineering Geology and the Environment,2015,74(2):555-565.
|
[25] |
LIU C,DENG H,ZHAO H,et al. Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test[J]. Cold Regions Science and Technology,2018,155(8):327-332.
|
[36] |
MENG F,ZHAI Y,LI Y,et al. Research on the effect of pore characteristics on the compressive properties of sandstone after freezing and thawing[J]. Engineering Geology,2021,286:106088.
|
[47] |
丁少梅,赵忠虎,王宁宁,等. 岩石强度理论的分类评述[J]. 水利与建筑工程学报,2017,15(1):95-102.(DING Shaomei,ZHAO Zhonghu,WANG Ningning,et al. The classification review of rock strength theory[J]. Journal of Water Resources and Architectural Engineering,2017,15(1):95-102.(in Chinese))
|
[1] |
郭长宝,张永双,蒋良文,等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质,2017,31(5):877-889.(GUO Changbao,ZHANG Yongshuang,JIANG Liangwen,et al. Discussion on the environmental and engineering geological problems along the Sichuan-Tibet railway and its adjacent area[J]. Geoscience,2017,31(5):877-889.(in Chinese))
|
[8] |
KE B,ZHOU K,DENG H,et al. NMR pore structure and dynamic characteristics of sandstone caused by ambient freeze-thaw action[J]. Shock and Vibration,2017,2017(4):1-10.
|
[10] |
WENG L,WU Z,LIU Q,et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures[J]. Engineering Fracture Mechanics,2019,220:106659.
|
[12] |
JIA H,DING S,WANG Y,et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology,2019,168:102893.
|
[19] |
LI K,CHENG Y,YIN Z,et al. Size effects in a transversely isotropic rock under Brazilian tests:Laboratory testing[J]. Rock Mechanics and Rock Engineering,2020,53:2 623-2 642.
|
[21] |
ASPRONE D,CADONI E,PROTA A,et al. Dynamic behavior of a Mediterranean natural stone under tensile loading[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(3):514-520.
|
[30] |
FAN L,WU Z,WAN Z,et al. Experimental investigation of thermal effects on dynamic behavior of granite[J]. Applied Thermal Engineering,2017,125(7):94-103.
|
[2] |
中华人民共和国国家标准编写组. GB 50176—2016 民用建筑热工设计规范[S]. 北京:中国建筑工业出版社,2016.(The National Standards Compilation Group of People¢s Republic of China. GB 50176—2016 Code for thermal design of civil building[S]. Beijing:China Architecture and Building Press,2016.(in Chinese))
|
[4] |
薛翊国,孔凡猛,杨为民,等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3):445-468.(XUE Yiguo,KONG Fanmeng,YANG Weimin,et al. Main unfavorable geological conditions and engineering geological problems along Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):445-468.(in Chinese))
|
[7] |
ZHANG H,MENG X,YANG G. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure[J]. Cold Regions Science and Technology,2020,103056.
|
[9] |
KE B,ZHOU K,XU C,et al. Dynamic mechanical property deterioration model of sandstone caused by freeze-thaw weathering[J]. Rock Mechanics and Rock Engineering,2018,51:2 791-2 804.
|
[11] |
ZHANG J,DENG H,TAHERI A,et al. Deterioration and strain energy development of sandstones under quasi-static and dynamic loading after freeze-thaw cycles[J]. Cold Regions Science and Technology,2019,160(1):252-264.
|
[13] |
LI J,KAUNDA R B,ZHOU K. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology,2018,154(6):133-141.
|
[15] |
SUN Y,ZHAI C,XU J,et al. Characterization and evolution of the full size range of pores and fractures in rocks under freeze-thaw conditions using nuclear magnetic resonance and three-dimensional X-ray microscopy[J]. Engineering Geology,2020,271:105616.
|
[18] |
LI D,WONG L. The Brazilian disc test for rock mechanics applications:Review and new insights[J]. Rock Mechanics and Rock Engineering,2013,46(2):269-287.
|
[20] |
WENG L,WU Z,LIU Q. Dynamic mechanical properties of dry and water-saturated siltstones under sub-zero temperatures[J]. Rock Mechanics and Rock Engineering,2020,53:694-700.
|
[22] |
CADONI E. Dynamic characterization of Orthogneiss rock subjected to intermediate and high strain rates in tension[J]. Rock Mechanics and Rock Engineering,2010,43(6):667-676.
|
[5] |
郑宗溪,孙其清. 川藏铁路隧道工程[J]. 隧道建设,2017,37(8):1 049-1 054.(ZHENG Zongxi,SUN Qiqing. Tunnel engineering of Sichuan—Tibet railway[J]. Tunnel Construction,2017,37(8):1 049-1 054.(in Chinese))
|
[16] |
TANG Y,YAN J. Effect of freeze-thaw on hydraulic conductivity and microstructure of soft soil in Shanghai area[J]. Environmental Earth Sciences,2015,73(11):7 679-7 690.
|
[24] |
WANG Q,LI W,XIE H. Dynamic split tensile test of Flattened Brazilian Disc of rock with SHPB setup[J]. Mechanics of Materials,2009,41(3):252-260.
|
[26] |
PEI P,DAI F,LIU Y,et al. Dynamic tensile behavior of rocks under static pre-tension using the flattened Brazilian disc method[J]. International Journal of Rock Mechanics and Mining Sciences,2020,126:104208.
|
[27] |
YAO W,XIA K,LIU H. Influence of heating on the dynamic tensile strength of two mortars:Experiments and models[J]. International Journal of Impact Engineering,2018,122(9):407-418.
|
[29] |
施劲松,许金余,任韦波,等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报,2014,35(5):703-710.(SHI Jinsong,XU Jinyu,REN Weibo,et al. Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading[J]. Acta Armamentarii,2014,35(5):703-710.(in Chinese))
|
[31] |
SUN Q,ZHANG W,PAN X,et al. The effect of heating/cooling cycles on chrominance,wave velocity,thermal conductivity and tensile strength of diorite[J]. Environmental Earth Sciences,2019,78(14):403.
|
[33] |
殷英政,李志国. 我国代表城市混凝土冻融循环次数探讨[J]. 低温建筑技术,2015,37(11):12-15.(YIN Yingzheng,LI Zhiguo. Discussion on freeze-thaw cycles of concrete in representative cities in my country[J]. Low Temperature Architecture Technology,2015,37(11):12-15.(in Chinese))
|
[35] |
中华人民共和国国家标准编写组. GBT50266—2013工程岩体试验方法标准[S]. 北京:中国计划出版社,2013.(The National Standards Compilation Group of the People¢s Republic of China. GBT50266—2013 Standard for test methods of engineering rock mass[S]. Beijing:China Planning Press,2013.(in Chinese))
|
[37] |
ZHOU Z,CAI X,CHEN L,et al. Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone[J]. Engineering Geology,2017,220(1):1-12.
|
[38] |
GONG F,SI X,LI X,et al. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar[J]. International Journal of Rock Mechanics and Mining Sciences,2019,113(12):211-219.
|
[6] |
宋 章,张广泽,蒋良文,等. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计,2016,60(1):14-19.(SONG Zhang,ZHANG Guangze,JIANG Liangwen,et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan—Tibet railway[J]. Railway Standard Design,2016,60(1):14-19.(in Chinese))
|
[17] |
GONG F,HU J. Energy dissipation characteristic of red sandstone in the dynamic Brazilian disc test with SHPB setup[J]. Advances in Civil Engineering,2020,2020(5):7160937.
|
[23] |
DAI F,XIA K. Loading rate dependence of tensile strength anisotropy of Barre granite[J]. Pure and Applied Geophysics,2010,167(11):1 419-1 432.
|
[34] |
中华人民共和国行业标准编写组. T/CSRME 001—2019岩石动力特性试验规程[S]. 北京:中国标准出版社,2020.(The Professional Standards Compilation Group of the People¢s Republic of China. T/CSRME 001—2019 Technical specification for testing method of rock dynamic properties[S]. Beijing:Standards Press of China,2020.(in Chinese))
|
[45] |
ZHANG Z,KOU S,JIANG L,et al. Effects of loading rate on rock fracture:Fracture characteristics and energy partitioning[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(5):745-762.
|
[28] |
谢和平,鞠 杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3 003-3 010.(XIE Heping,JU Yang,LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3 003-3 010.(in Chinese))
|
[32] |
WU Q,WENG L,ZHAO Y,et al. On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates[J]. Engineering Geology,2019,253(3):94-110.
|
[41] |
MATSUOKA N. Mechanisms of rock breakdown by frost action-an experimental approach[J]. Cold Regions Science and Technology,1990,17(3):253-270.
|
[43] |
李 春,胡耀青,张纯旺,等. 不同温度循环冷却作用后花岗岩巴西劈裂特征及其物理力学特性演化规律研究[J]. 岩石力学与工程学报,2020,39(9):1 797-1 807.(LI Chun,HU Yaoqing,ZHANG Chunwang,et al. Brazilian split characteristics and mechanical property evolution of granite after cyclic cooling at different temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(9):1 797-1 807.(in Chinese))
|
[39] |
ZHANG H,ADOKO A C,MENG Z,et al. Mechanism of the mudstone tunnel failures induced by expansive clay minerals[J]. Geotechnical and Geological Engineering,2016,35(1):1-13.
|