[44] |
KINGMA D P,BA J. Adam:A method for stochastic optimization[J]. Eprint Arxiv,2015:1412.6980.
|
[45] |
HOWARD A G,ZHU M L,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. Eprint Arxiv,2017:1704.04861.
|
[33] |
刘密歌. 采样定理研究[J]. 西安文理学院学报:自然科学版,2019,22(5):64–68.(LIU Mige. Research on sampling theorem[J]. Journal of Xian University:Natural Science,2019,22(5):64–68.(in Chinese))
|
[1] |
姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2 188–2 204.(JIANG Yaodong,ZHAO Yixin. State of the art:investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2 188–2 204.(in Chinese))
|
[3] |
ZHANG W Q,SHI Z J,WANG Z Q,et al. Identifying critical failure information of thermal damaged sandstone through acoustic emission signal[J]. Journal of Geophysics and Engineering,2021,18(4):558–566.
|
[11] |
吕进国,潘 立. 微震预警冲击地压的时间序列方法[J]. 煤炭学报,2010,35(12):2 002–2 005.(LV Jinguo,PAN Li. Microseismic predicting coal bump by time series method[J]. Journal of China Coal Society,2010,35(12):2 002–2 005.(in Chinese))
|
[6] |
张 茹,谢和平,刘建锋,等. 单轴多级加载岩石破坏声发射特性试验研究[J]. 岩石力学与工程学报,2006,25(12):2 584–2 588. (ZHANG Ru,XIE Heping,LIU Jianfeng,et al. Experimental study on acoustic emission characteristics of rock failure under uniaxial multilevel loadings[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(12):2 584–2 588.(in Chinese))
|
[7] |
李庶林,尹贤刚,王泳嘉,等. 单轴受压岩石破坏全过程声发射特征研究[J]. 岩石力学与工程学报,2004,23(15):2 499–2 503.(LI Shulin,YIN Xiangang,WANG Yongjia,et al. Studies on acoustic emission characteristics of uniaxial compressive rock failure[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2 499–2 503.(in Chinese))
|
[9] |
TROMBIK M,ZUBEREK W. Microseismic research in polish coal mine[C]// Proceedings of the First Conference on Acoustic Emission/ Microseismic Activity in Geological Structures and Materials. [S. l. ]:Trans Tech Publications,1977:169–194.
|
[13] |
石显鑫,蔡栓荣,冯 宏,等. 利用声发射技术预测预报煤与瓦斯突出[J]. 煤田地质与勘探,1998,26(3):60–65.(SHI Xianxin,CAI Shuanrong,FENG Hong,et al. The prediction of coal and gas outburst using the acoustic emission technique[J]. Coal Geology and Exploration,1998,26(3):60–65.(in Chinese))
|
[16] |
SUN H,LIU X L,ZHU J B. Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences,2019,117:1–10.
|
[17] |
高文根,段会强,杨永新. 周期荷载作用下煤岩声发射特征的颗粒流模拟[J]. 应用力学学报,2021,38(1):262–268.(GAO Wengen,DUAN Huiqiang,YANG Yongxin. Particle flow simulation of acoustic emission characteristics of coal sample subjected to cyclic loading[J]. Chinese Journal of Applied Mechanics,2021,38(1):262–268.(in Chinese))
|
[4] |
ZHENG Q Q,XU Y,HU H,et al. Quantitative damage,fracture mechanism and velocity structure tomography of sandstone under uniaxial load based on acoustic emission monitoring technology[J]. Construction and Building Materials,2020,272:121911.
|
[14] |
夏永学,蓝 航,魏向志. 基于微震和地音监测的冲击危险性综合评价技术研究[J]. 煤炭学报,2011,36(增2):358–364.(XIA Yongxue,LAN Hang,WEI Xiangzhi. Study of comprehensive evaluation technology for rock burst hazard based on microseismic and underground sound monitoring[J]. Journal of China Coal Society,2011,36(Supp.2):358–364.(in Chinese))
|
[19] |
李建功. 深部矿井应力主导型煤岩瓦斯动力灾害声发射监测预警方法[J]. 山东科技大学学报:自然科学版,2020,39(4):20–27.(LI Jiangong. Acoustic emission monitoring and early warning method for stress-dominated coal-gas dynamic disasters in deep mines[J]. Journal of Shandong University of Science and Technology:Natural Science,2020,39(4):20–27.(in Chinese))
|
[21] |
张 凯. 基于神经网络分析的煤柱型冲击地压多参量综合预警研究[硕士学位论文][D]. 青岛:山东科技大学,2018.(ZHANG Kai. Research on multi parameter comprehensive warning of coal pillar rockburst based on neural network analysis[M. S. Thesis][D]. Qingdao:Shandong University of Science and Technology,2018.(in Chinese))
|
[24] |
QIU Z F,YAO T,MEI T. Learning spatio-temporal representation with pseudo-3d residual networks[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice,Italy:IEEE,2017:5 533–5 541.
|
[26] |
HE K M,ZHANG X Y,REN S P,et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA:IEEE,2016:770–778.
|
[27] |
HUANG G,LIU Z,LAURENS V,et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii,USA:IEEE,2017:4 700–4 708.
|
[29] |
XIE S N,GIRSHICK R,DOLLáR P,et al. Aggregated residual transformations for deep neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii,USA:IEEE,2017:1 492–1 500.
|
[31] |
IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning,France:PMLR,2015,37:448–456.
|
[34] |
LEI X,NISHIZAWA O,KUSUNOSE K,et al. Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes[J]. Earth Planets and Space,2009,40(6):617–634.
|
[2] |
刘 超. 含瓦斯煤岩破裂过程微震监测与分析[M]. 徐州:中国矿业大学出版社,2017:14–16.(LIU Chao. Microseismic monitoring and its analysis for failure process of gas-saturated coal[M]. Xuzhou:China University of Mining and Technology Press,2017:14–16.(in Chinese))
|
[12] |
杨增福,杨胜利,杨文强. 煤岩单轴压缩条件下声发射与破坏特征差异性研究[J]. 煤炭工程,2021,53(4):136–140.(YANG Zengfu,YANG Shengli,YANG Wenqiang. Difference between acoustic emission and failure characteristics of coal rock under uniaxial compression[J]. Coal Engineering,2021,53(4):136–140.(in Chinese))
|
[22] |
DI Y Y,WANG E Y,LI Z H,et al. Method for EMR and AE interference signal identification in coal rock mining based on recurrent neural networks[J]. Earth Science Informatics,2021,14(3):1 521–1 536.
|
[32] |
BOTTOU L. Stochastic gradient descent tricks[M]. Heidelberg,Germany:Springer Berlin Heidelberg,2012:421–436.
|
[36] |
刘 斌. 动静载荷下煤岩冲击失稳机理及多参量前兆特征研究[博士学位论文][D]. 北京:中国矿业大学,2021.(LIU Bin. Mechanism of rock burst and multi-parameter precursory characteristics under dynamic and static loads[Ph. D. Thesis][D]. Beijing:China University of Mining and Technology(Beijing),2021.(in Chinese))
|
[37] |
LIU X L,LIU Z,LI X B,et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics[J]. International Journal of Rock Mechanics and Mining Sciences,2020,133:104420.
|
[39] |
HORNIK K,STINCHCOMBE M,WHITE H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural Networks,1990,3(5):551–560.
|
[41] |
ELGMATI E A,GREDNI N B. Quartile method estimation of two-parameter exponential distribution data with outliers[J]. International Journal of Statistics and Probability,2016,5(5):12–15.
|
[42] |
宗春梅,张月琴,石 丁. PyTorch下基于CNN的手写数字识别及应用研究[J]. 计算机与数字工程,2021,49(6):1 107–1 112.(ZONG Chunmei,ZHANG Yueqin,SHI Ding. Research on handwritten number recognition and application based on CNN under PyTorch[J]. Computer and Digital Engineering,2021,49(6):1 107–1 112.(in Chinese))
|
[46] |
ZHANG X Y,ZHOU X Y,LIN M X,et al. ShuffleNet:An extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake,USA:IEEE,2018:6 848–6 856.
|
[47] |
ZAGORUYKO S,KOMODAKIS N. Paying more attention to attention:Improving the performance of convolutional neural networks via attention transfer[J]. Eprint Arxiv,2016:1612.03928.
|
[5] |
ZHANG Z H,DENG J H,ZHU J B,et al. An experimental investigation of the failure mechanisms of jointed and intact marble under compression based on quantitative analysis of acoustic emission waveforms[J]. Rock Mechanics and Rock Engineering,2018,51(7):2 299–2 307.
|
[8] |
李 杰,邱黎明,殷 山,等. 煤岩膨胀破裂应变及声发射特征试验研究[J]. 工矿自动化,2021,47(2):63–69.(LI Jie,QIU Liming,YIN Shan,et al. Experimental study on characteristics of strain and acoustic emission in the process of coal rock expansion and fracture[J]. Industry and Mine Automation,2021,47(2):63–69.(in Chinese))
|
[10] |
MCKAVANAGH B M,ENEVER J R. Developing a microseismic outburst warning system[C]// Proceedings of the Second Conference on Acoustic Emission/Microseismic Activity in Geological Structures and Materials. [S. l. ]:Trans Tech Publications,1980:211–225.
|
[15] |
李元辉,刘建坡,赵兴东,等. 岩石破裂过程中的声发射b值及分形特征研究[J]. 岩土力学,2009,30(9):2 559–2 563.(LI Yuanhui,LIU Jianpo,ZHAO Xingdong,et al. Study on b-value and fractal dimension of acoustic emission during rock failure process[J]. Rock and Soil Mechanics,2009,30(9):2 559–2 563.(in Chinese))
|
[18] |
张志博,李树杰,王恩元,等. 基于声发射事件时–空维度聚类分析的煤体损伤演化特征研究[J]. 岩石力学与工程学报,2020,39(增2):3 338–3 347.(ZHANG Zhibo,LI Shujie,WANG Enyuan,et al. Research on the damage evolution characteristics of coal based on cluster analysis of temporal-spatial dimension of acoustic emission events[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Supp.2):3 338–3 347.(in Chinese))
|
[20] |
WANG C L,CHEN Z,LIAO Z F,et al. Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst[J]. Journal of Central South University,2020,27(10):2 834–2 848.
|
[25] |
SAINATH T N,VINYALS O,SENIOR A,et al. Convolutional,long short-term memory,fully connected deep neural networks[C]// 2015 IEEE International Conference on Acoustics,speech and signal processing. New Orleans,Los Angeles,USA:IEEE,2015:4 580–4 584.
|
[28] |
KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84–90.
|
[30] |
HU J,SHEN L,SUN G,et al. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake,USA:IEEE,2018:7 132–7 141.
|
[35] |
XU Z Q,ZHANG Y Y,LUO T,et al. Frequency principle:Fourier analysis sheds light on deep neural networks[J]. Communications in Computational Physics,2020,28(5):1 746–1 767.
|
[38] |
王 峰. 基于深度学习的地震数据去噪和重建方法的研究[博士学位论文][D]. 浙江:浙江大学,2021.(WANG Feng. Research on seismic data denoising and reconstruction using deep learning[Ph. D. Thesis][D]. Zhejiang:Zhejiang University,2021.(in Chinese))
|
[40] |
NEAL R M. Markov chain sampling methods for dirichlet process mixture models[J]. Journal of Computational and Graphical Statistics,2000,9(2):249–265.
|
[23] |
TRAN D,BOURDEV L,FERGUS R,et al. Learning spatiotemporal features with 3d convolutional networks[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago,Chile:IEEE,2015:4 489–4 497.
|
[43] |
HUANG J C,QU L,JIA R F,et al. O2U-Net:A simple noisy label detection approach for deep neural networks[C]// Proceedings of the IEEE International Conference on Computer Vision. Seoul,South Korea:IEEE,2019:3 326–3 334.
|