[34] |
GUO C B,ZHANG Y S,MONTGOMERY D R,et al. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide,Tibetan Plateau,China? [J]. Geomorphology,2016,259:145–154.
|
[45] |
VAN GASSEN W,CRUDEN D M. Momentum transfer and friction in the debris of rock avalanches[J]. Canadian Geotechnical Journal, 1989,26:623–628.
|
[9] |
自然资源部中国地质调查局网. https://www.cgs.gov.cn/gzdt/zsdw/ 202003/t20200331_504559.html.2020–03–31/2021–04–11.
|
[20] |
STROM A,ABDRAKHMATOV K. Rockslides and rock avalanches of central Asia:distribution,morphology,and internal structure[M]. Netherlands:Elsevier,2018:1–441.
|
[1] |
HEIM A. Bergsturz und menschenleben[C]//Landslides and Human Lives. Vancouver,B C:BiTech Publishers Ltd.,1989:1–203.
|
[23] |
HE S M,LIU W,WANG J. Dynamic simulation of landslide based on thermo-poro-elastic approach[J]. Computers and Geosciences,2015,75:24–32.
|
[14] |
ZHANG Y,CHENG Y,YIN Y,et al. High-position debris flow:A long-term active geohazard after the Wenchuan earthquake[J]. Engineering Geology,2014,180:45–54.
|
[54] |
ERISMANN T H. Mechanisms of large landslides[J]. Rock Mechanics,1979,12(1):15–46.
|
[35] |
LEGROS F. The mobility of long-runout landslides[J]. Engineering Geology,2002,63:301–331.
|
[46] |
HUNGR O. Momentum transfer and friction in the debris of rock avalanches:Discussion[J]. Canadian Geotechnical Journal,1990, 27:697.
|
[22] |
DUFRESNE A,DAVIES T R. Longitudinal ridges in mass movement deposits[J]. Geomorphology,2009,105(3/4):171–181.
|
[8] |
The International Disaster Database. https://public.emdat.be/data.2021– 05–06/2021–05–07.
|
[52] |
IVERSON R M. Elementary theory of bed-sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research:Earth Surface,2012,117:F03006.
|
[3] |
程谦恭,张倬元,黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报,2007,25(1):72–84.(CHENG Qiangong,ZHANG Zhuoyuan,HUANG Runqiu. Study on dynamics of rock avalanches:state of the art report[J]. Journal of Mountain Science,2007,25(1):72–84.(in Chinese))
|
[5] |
高 杨,李 滨,高浩源,等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报,2020,26(4):510–519.(GAO Yang,LI Bin,GAO Haoyuan,et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics,2020,26(4):510–519.(in Chinese))
|
[6] |
STROM A L. Mechanism of stratification and abnormal crushing of rockslide deposits[C]// OLIVEIRA R,ERODRIGUES L,COELHO A G,et al ed. Proceedings of the 7th International IAEG Congress. Rotterdam:A A Balkema,1994:1 287–1 295.
|
[11] |
彭建兵,马润勇,卢全中,等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004,19(3):457–466.(PENG Jianbing,MA Runyong,LU Quanzhong,et al. Geological hazards effects of uplift Qinghai—Tibet Plateau[J]. Advance in Earth Science,2004,19(3):457–466.(in Chinese))
|
[12] |
彭建兵,崔 鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2 377–2 389.(PENG Jianbing,CUI Peng,ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2 377–2 389.(in Chinese))
|
[16] |
郭长宝,张永双,杨志华,等. 川藏铁路沿线活动断裂与地质灾害效应调查研究[M]. 北京:地质出版社,2018:1–288.(GUO Changbao,ZHANG Yongshuang,YANG Zhihua,et al. Investigation and research on the active faults along the Sichuan-Tibet railway and geological disaster[M]. Beijing:Geological Publishing House,2018:1–288.(in Chinese))
|
[17] |
LU C,CAI C. Challenges and countermeasures for construction safety during the Sichuan—Tibet Railway project[J]. Engineering,2019,5(5):49–61.
|
[19] |
ROBERTS N J,EVANS S G. The gigantic Seymareh(Saidmarreh) rock avalanche,Zagros Fold-Thrust Belt,Iran[J]. Journal of the Geological Society,London,2013,170:685–700.
|
[2] |
张 明,殷跃平,吴树仁,等. 高速远程滑坡–碎屑流运动机制研究发展现状与展望[J]. 工程地质学报,2010,18(6):805–817. (ZHANG Ming,YIN Yueping,WU Shuren,et al. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology,2010,18(6):805–817.(in Chinese))
|
[4] |
王玉峰,林棋文,李 坤,等. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报,2021,43(1):164–181.(WANG Yufeng,LIN Qiwen,LI Kun,et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment,2021,43(1):164–181.(in Chinese))
|
[7] |
许 强,裴向军,黄润秋. 汶川地震大型滑坡研究[M]. 北京:科学出版社,2009:1–473.(XU Qiang,PEI Xiangjun,HUANG Runqiu. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing:Science Press,2009:1–473.(in Chinese))
|
[10] |
中国地质环境信息网. http://www.cigem.cn/auto/s/0/detail.html?db =800001&rid=160217B8D3BE7FD4868C389C04981226&word=undefined&title=&mpgp=2019%E5%B9%B4%E5%85%A8%E5%9B%BD%E5%9C%B0%E8%B4%A8%E7%81%BE%E5%AE%B3%E9%80%9A%E6%8A%A5.2020–03–31/2021–04–11.
|
[13] |
张永双,熊探宇,杜宇本,等. 高黎贡山深埋隧道地应力特征及岩爆模拟试验[J]. 岩石力学与工程学报,2009,28(11):2 286–2 294. (ZHANG Yongshuang,XIONG Tanyu,DU Yuben,et al. Geostress characteristic and simulation experiment of rockburst of a deep-buried tunnel in Gaoligong mountain[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(11):2 286–2 294.(in Chinese))
|
[15] |
崔 鹏,苏凤环,邹 强,等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报,2015,32:3 067–3 077.(CUI Peng,SU Fenghuan,ZOU Qiang,et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau[J]. Chinese Science Bulletin,2015,32:3 067–3 077.(in Chinese))
|
[18] |
SHREVE R L. The Blackhawk Landslide[J]. The Geological Society of America,1968,108:1–48.
|
[21] |
WANG Y F,CHENG Q G,LIN Q W,et al. Insights into the kinematics and dynamics of the Luanshibao rock avalanche(Tibetan Plateau,China) based on its complex surface landforms[J]. Geomorphology,2018,317:170–183.
|
[24] |
WANG Y F,DONG J J,CHENG Q G. Velocity-dependent frictional weakening of large rock avalanche basal facies:implications for rock avalanche hypermobility[J]. Journal of Geophysical Research:Solid Earth,2017,122(3):1 648–1 676.
|
[25] |
WANG Y F,DONG J J,CHENG Q G. Normal stress-dependent frictional weakening of large rock avalanche basal facies:implications for the rock avalanche volume effect[J]. Journal of Geophysical Research:Solid Earth,2018,123(4):3 270–3 282.
|
[27] |
HU W,HUANG R Q,MCSAVENEY M,et al. Superheated steam,hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:field and experimental evidence[J]. Earth and Planetary Science Letters,2019,510:85–93.
|
[29] |
LI K,WANG Y F,LIN Q W,et al. Experiments on granular flow behavior and deposit characteristics:implications for rock avalanche kinematics[J]. Landslides,2021,18:1 779–1 799.
|
[33] |
王世元,梁明剑,李 伟,等. 理塘–义敦断裂1∶5万活动断层填图数据库及防震减灾运用[J]. 四川地震,2014,153(4):6–10.(WANG Shiyuan,LIANG Mingjian,LI Wei,et al. Mapping database of Litang—Yidun active fault and its benefits to protecting against and mitigating earthquake disaster[J]. Earthquake Research in Sichuan,2014,153(4):6–10.(in Chinese))
|
[36] |
LUCAS A,MANGENEY A,AMPUERO J P. Frictional velocity-weakening in landslides on Earth and on other planetary bodies[J]. Nature communications,2014,(5):1–9.
|
[38] |
袁运强. 基于MatDEM的乱石包高速远程滑坡运动特征研究[硕士学位论文][D]. 成都:西南交通大学,2020:35–49.(YUAN Yunqiang. Study on kinematic characteristics of lanshibao rock avalanche based on MatDEM[M. S. Thesis][D]. Chengdu:Southwest Jiaotong University,2020:35–49.(in Chinese))
|
[40] |
TANG C L,HU J C,LIN M L,et al. The Tsaoling landslide triggered by the Chi-Chi earthquake,Taiwan:Insights from a discrete element simulation[J]. Engineering Geology,2009,106(1/2):1–19.
|
[44] |
WANG Y F,CHENG Q G,SHI A W,et al. Sedimentary deformation structures in the Nyixoi Chongco rock avalanche:implications on rock avalanche transport mechanisms[J]. Landslides,2019,16(3):523–532.
|
[47] |
刘忠玉,马崇武,苗天德,等. 高速滑坡远程预测的块体运动模型[J]. 岩石力学与工程学报,2000,19(6):742–746.(LIU Zhongyu,MA Chongwu,MIAO Tiande,et al. Kinematic block model of long run-out prediction for high-speed landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(6):742–746.(in Chinese))
|
[49] |
刘涌江,胡厚田,赵晓彦. 高速滑坡岩体碰撞效应的试验研究[J]. 岩土力学,2004,25(2):255–260.(LIU Yongjiang,HU Houtian,ZHAO Xiaoyan. Experimental study on impact effect of high-speed landslide[J]. Rock and Soil Mechanics,2004,25(2):255–260.(in Chinese))
|
[51] |
郝明辉,许 强,杨 磊,等. 滑坡–碎屑流物理模型试验及运动机制探讨[J]. 岩土力学,2014,35(增1):127–132.(HAO Minghui,XU Qiang,YANG Lei,et al. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics,2014,35(Supp.1):127–132.(in Chinese))
|
[55] |
HABIB P. Production of gaseous pore pressure during rock slides[J]. Rock Mechanics and Rock Engineering,1975,7(4):193–197.
|
[26] |
MITCHELL T M,SMITH S A F,ANDERS M H,et al. Catastrophic emplacement of giant landslides aided by thermal decomposition:Heart Mountain,Wyoming[J]. Earth and Planetary Science Letters,2015,411:199–207.
|
[28] |
YANG Q Q,SU Z M,CHENG Q G,et al. High mobility of rock-ice avalanches:insights from small flume tests of gravel-ice mixtures[J]. Engineering Geology,2019,260:105260.
|
[30] |
LI K,WANG Y F,CHENG Q G,et al. Insight into granular flow dynamics relying on basal stress measurements:from experimental flume tests[J]. Journal of Geophysical Research:Solid Earth,2022,to be in pressed.
|
[31] |
刘 春,乐天呈,施 斌,等. 颗粒离散元法工程应用的3大问题探讨[J]. 岩石力学与工程学报,2020,39(6):1 142–1 152.(LIU Chun,LE Tiancheng,SHI Bin,et al. Discussion on three major problems of engineering application of the particle discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1 142–1 152.(in Chinese))
|
[32] |
唐荣昌,韩渭宾. 四川活动断裂与地震[M]. 北京:地震出版社,1993:1–368.(TANG Rongchang,HAN Weibin. Active faults and earthquake in Sichuan Province[M]. Beijing:Earthquake Publish Company,1933:1–368.(in Chinese))
|
[37] |
刘 春,范宣梅,朱晨光,等. 三维大规模滑坡离散元建模与模拟研究—以茂县新磨村滑坡为例[J]. 工程地质学报,2019,27(6):1 362–1 370.(LIU Chun,FAN Xuanmei,ZHU Chenguan,et al. Discrete element modeling and simulation of 3-dimensional large-scale landslide-taking Xinmocun landslide as an example[J]. Journal of Engineering Geology,2019,27(6):1 362–1 370.(in Chinese))
|
[39] |
付晓东,盛 谦,张勇慧. DDA方法中的人工边界问题研究[J]. 岩石力学与工程学报,2015,34(5):986–993.(FU Xiaodong,SHENG Qian,ZHANG Yonghui. Investigation on artificial boundary problem in discontinuous deformation analysis method[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(5):986–993.(in Chinese))
|
[41] |
CHARRIèRE M,HUMAIR F,FROESE C,et al. From the source area to the deposit:collapse,fragmentation,and propagation of the Frank Slide[J]. GSA Bulletin,2016,128(1/2):332–351.
|
[42] |
WANG Y F,CHENG Q G,YUAN Y Q,et al. Emplacement mechanisms of the Tagarma rock avalanche on the Pamir-western Himalayan syntaxis of the Tibetan Plateau,China[J]. Landslides,2020,17(3):527–542.
|
[43] |
ZENG Q L,ZHANG L Q,DAVIES T,et al. Morphology and inner structure of Luanshibao rock avalanche in Litang,China and its implications for long-runout mechanisms[J]. Engineering Geology,2019,260,DOI:10.1016/j.enggeo.2019.105216.
|
[48] |
WANG Y F,XU Q,CHENG Q G,et al. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography:experimental study[J]. Rock Mechanics and Rock Engineering,2016,49(11):1–22.
|
[50] |
OKADA Y,UCHIDA I. Dependence of runout distance on the number of rock blocks in large-scale rockmass failure experiments[J]. Journal of Forest Research,2014,19(3):329–339.
|
[53] |
FARIN M,MANGENEY A,ROCHE O. Fundamental changes of granular flow dynamics,deposition,and erosion processes at high slope angles:insights from laboratory experiments[J]. Journal of Geophysical Research:Earth Surface,2014,119(3):504–532.
|