[24] |
LIU J,NICOT F,ZHOU W. Sustainability of internal structures during shear band forming in 2D granular materials[J]. Powder technology,2018,338:458-470.
|
[10] |
LI P,XIE W,PAK R Y S,et al. Microstructural evolution of loess soils from the Loess Plateau of China[J]. Catena,2019,173:276-288.
|
[20] |
DESRUES J,ANDÒ E. Strain localisation in granular media[J]. Comptes Rendus Physique,2015,16(1):26-36.
|
[6] |
蔡正银,李相菘. 无黏性土中剪切带的形成过程[J]. 岩土工程学报,2003,25(2):129-134.(CAI Zhengying,LI Xiangsong. Formation of shear band in cohesionless soils[J]. Chinese Journal of Geotechnical Engineering,2003,25(2):129-134.(in Chinese))
|
[3] |
YANG X,MENG M Q,CHEN Q S,et al. Friction and dilatancy angles of granular soils incorporating effects of shearing modes[J]. International Journal of Geomechanics,2018,18(11):6018027.
|
[4] |
AMON A,NGUYEN T B. Experimental study of shear band formation:Bifurcation and localization[J]. Europhys Letters,2016,116(2):28007.
|
[8] |
DENG Y,YILMAZ Y,GOKCE A,et al. Influence of particle size on the drained shear behavior of a dense fluvial sand[J]. Acta Geotechnica,2021,16(7):2 071-2 088.
|
[13] |
TANG H,DU T,ZHANG L,et al. A plane strain testing apparatus characterized by flexible loading and noncontact deformation measurement and its application to the study of shear band failure of sand[J]. International Journal of Distributed Sensor Networks,2018,14(9):1550147718799042.
|
[1] |
JIANG Y,WANG G,KAMAI T,et al. Effect of particle size and shear speed on frictional instability in sheared granular materials during large shear displacement[J]. Engineering Geology,2016,210:93-102.
|
[11] |
KETCHAM R A,CARLSON W D,MARSCHALLINGER R,et al. Acquisition,optimization and interpretation of X-ray computed tomographic imagery;applications to the geosciences[J]. Computers and Geosciences,2001,27(4):381-400.
|
[16] |
SOLTANBEIGI B,ALTUNBAS A,CINICIOGLU O. Influence of dilatancy on shear band characteristics of granular backfills[J]. European Journal of Environmental and Civil Engineering,2021,25(7):1 201-1 218.
|
[18] |
AMIRRAHMAT S,DRUCKREY A M,ALSHIBLI K A,et al. Micro shear bands:Precursor for strain localization in sheared granular materials[J]. Journal of Geotechnical and Geoenvironmental Engineering,2019,145(2):04018104.
|
[21] |
WIEBICKE M,ANDÒ E,VIGGIANI G,et al. Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica,2020,15(1):79-93.
|
[23] |
CHENG Z,WANG J. Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography[J]. Soils and Foundations,2018,58(6):1 492-1 510.
|
[26] |
TIAN J,LIU E. Effect of particle shape on micro-and mesostructure evolution of granular assemblies under biaxial loading conditions[J]. Comptes Rendus Mécanique,2018,346(12):1 233-1 252.
|
[28] |
HAZEGHIAN M,SOROUSH A. DEM-aided study of Coulomb and Roscoe theories for shear band inclination[J]. Acta Geotechnica,2022,17(8):3 357-3 375.
|
[31] |
WU K,LIU S,SUN W,et al. DEM study of the shear behavior and formation of shear band in biaxial test[J]. Advanced Powder Technology,2020,31(4):1 431-1 440.
|
[33] |
钱建固,黄茂松. 轴对称状态下土体剪切带触发形成的分叉理论[J]. 岩土工程学报,2003,25(4):400-404.(QIAN Jiangu,HUANG Maosong. Bifurcation of soils at inception of shear band under axisymmetric conditions[J]. Chinese Journal of Geotechnical Engineering,2003,25(4):400-404.(in Chinese))
|
[36] |
ZHANG J Q,WANG X,YIN Z Y,et al. DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary[J]. Engineering Geology,2020,279:105871.
|
[38] |
KAJIYAMA S,HYODO M,NAKATA Y,et al. Shear behaviour of methane hydrate bearing sand with various particle characteristics and fines[J]. Soils and Foundations,2017,57(2):176-193.
|
[41] |
JIANG M J,LIU J,SHEN Z. Investigating the shear band of methane hydrate-bearing sediments by FEM with an elasto-plastic constitutive model[J]. Bulletin of Engineering Geology and the Environment,2018,77:1 015-1 025.
|
[43] |
蒋明镜,张望城,孙渝刚,等. 理想胶结砂土力学特性及剪切带形成的离散元分析[J]. 岩土工程学报,2012,34(12):2 162-2 169. (JIANG Mingjing,ZHANG Wangcheng,SUN Yugang,et al. Mechanical behavior and shear band formation in idealized cemented sands by DEM[J]. Chinese Journal of Geotechnical Engineering,2012,34(12):2 162-2 169.(in Chinese))
|
[46] |
THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique,2000,50(1):43-53.
|
[9] |
WAKINDIKI I I C,HUR B M. Soil mineralogy and texture effects on crust micromorphology infiltration[J]. Soil Science Society of America Journal,2002,3(66):897-905.
|
[19] |
DRUCKREY A M,ALSHIBLI K A,AL-RAOUSH R I. Discrete particle translation gradient concept to expose strain localisation in sheared granular materials using 3D experimental kinematic measurements[J]. Géotechnique,2018,68(2):162-170.
|
[29] |
YANG P,KAVAZANJIAN E,NEITHALATH N. Particle-scale mechanisms in undrained triaxial compression of biocemented sands:Insights from 3D DEM simulations with flexible boundary[J]. International Journal of Geomechanics,2019,19(4):04019009.
|
[39] |
JIANG M J,KONRAD J M,LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics,2003,30(7):579-597.
|
[48] |
CAMBOU B,DUBUJET P,NOUGUIER-LEHON C. Anisotropy in granular materials at different scales[J]. Mechanics of Materials,2004,36(12):1 185-1 194.
|
[7] |
徐连民,朱合华,中井照夫,等. 超固结黏土的剪切带数值模拟[J]. 岩土力学,2006,27(1):61-66.(XU Lianmin,ZHU Hehua,NAKAI Teruo,et al. Numerical simulation of shear band in overconsolidated clay[J]. Rock and Soil Mechanics,2006,27(1):61-66.(in Chinese))
|
[17] |
IMSEEH W H,ALSHIBLI K A,AL-RAOUSH R I. Discrepancy in the critical state void ratio of poorly graded sand due to shear strain localization[J]. Journal of Geotechnical and Geoenvironmental Engineering,2020,146(8):04020066.
|
[27] |
MA G,ZHOU W,CHANG X,et al. Formation of shear bands in crushable and irregularly shaped granular materials and the associated microstructural evolution[J]. Powder Technology,2016,301:118-130.
|
[37] |
LI Z,WANG Y H,MA C H,et al. Experimental characterization and 3D DEM simulation of bond breakages in artificially cemented sands with different bond strengths when subjected to triaxial shearing[J]. Acta Geotechnica,2017,12(5):987-1 002.
|
[47] |
ZHU HX,YIN ZY. Grain rotation-based analysis method for shear band[J]. Journal Of Engineering Mechanics,2019,145(10):4019073.
|
[49] |
SITHARAM T G,VINOD J S,RAVISHANKAR B V. Post-liquefaction undrained monotonic behaviour of sands:experiments and DEM simulations[J]. Géotechnique,2009,59(9):739-749.
|
[5] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报,2019,41(2):195-254.(JIANG Mingjing. New paradigm for modern soil mechanics:Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):195-254.(in Chinese))
|
[15] |
KWAK T Y,PARK K H,KIM J,et al. Shear band characterization of clayey soils with particle image velocimetry[J]. Applied Sciences,2020,10(3):1 139.
|
[25] |
KRUYT N P,ROTHENBURG L. A micromechanical study of dilatancy of granular materials[J]. Journal of the Mechanics and Physics of Solids,2016,95:411-427.
|
[35] |
MEHMET B C,ALSHIBLI K A. 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary[J]. Acta Geotechnica,2014,9(2):287-298.
|
[45] |
ALSHIBLI K A,BATISTE S N,STURE S. Strain localization in sand;plane strain versus triaxial compression[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(6):483-494.
|
[2] |
WU Z X,YANG Y. Critical state for anisotropic granular materials:a discrete element perspective[J]. International Journal of Geomechanics,2017,17(2):4016054.
|
[12] |
LI X,ZHANG L M. Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal,2009,46(2):129-141.
|
[22] |
CHENG Z,WANG J. Investigation of the fabric evolution and the stress-transmission behaviour of sands based on X-ray μCT images[J]. Advanced Powder Technology,2019,30(9):1 858-1 869.
|
[32] |
TANG H,ZHANG X,JI S. Discrete element analysis for shear band modes of granular materials in triaxial tests[J]. Particulate Science and Technology,2017,35(3):277-290.
|
[42] |
王一伟,刘 润,孙若涵,等. 基于抗转模型的颗粒材料宏-细观关系研究[J]. 岩土力学,2022,43(4):945-956.(WANG Yiwei,LIU Run,SUN Ruohan,et al. Correlation of microscopic and macroscopical of granular materials based on rolling resistance linear contact model[J]. Rock and Soil Mechanics,2022,43(4):945-956.(in Chinese))
|
[14] |
RATTEZ H,SHI Y Z,SAC M,et al. Effect of grain size distribution on the shear band thickness evolution in sand[J]. Geotechnique,2022,72(4):350-363.
|
[30] |
TIAN J,LIU E,HE C. Shear band analysis of granular materials considering effects of particle shape[J]. Acta Mechanica,2020,231(11):4 445-4 461.
|
[34] |
JIANG M J,SHEN Z F,WANG J. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics,2015,65:147-163.
|
[40] |
SHINJI F,FUMIO T. Strength and deformation characteristics of saturated sand at extremely low pressures[J]. Soils and Foundations,1985,24(4):30-48.
|
[44] |
JIANG M J,YU H,HARRIS D. Kinematic variables bridging discrete and continuum granular mechanics[J]. Mechanics Research Communications,2006,33(5):651-666.
|
[50] |
GUO N,ZHAO J. The signature of shear-induced anisotropy in granular media[J]. Computers and Geotechnics,2013,47:1-15.
|