2025年8月8日 星期五
岩石力学与工程学报  2025, Vol. 44 Issue (S1): 262-272    DOI: 10.3724/1000-6915.jrme.2024.0240
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
考虑冻土–桩接触面流变效应的基础长期服役性能演变
施  瑞1,2,温  智1,2,王  旭1
(1. 兰州交通大学 土木工程学院,甘肃 兰州  730070;
2. 中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州  730000)
Evolution of long-term service performance of foundation considering rheological effect of contact interface between frozen soil and pile
SHI Rui1,2,WEN Zhi1,2,WANG Xu1
(1. School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China;2. State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China) 
全文: PDF (2294 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 接触面力学特性受冻融循环与流变作用存在显著的动态波动,直接影响冻土环境下桩基础长期服役性能,亟需深入研究。利用数值仿真,首先,建立考虑流变效应的冻土黏弹塑性本构模型;其次,对Kelvin模型进行改进,建立冻土–桩接触面黏弹性本构模型;进而构建综合考虑冻土、接触面流变效应的热力直接耦合模型。经室内模型试验验证后,采用该模型开展桩基础长期服役性能演变规律分析。结果表明:该接触面模型可反映应力水平对流变效应的影响。冻融循环过程中,地基升温时上部桩侧摩阻力逐渐降低(降幅39%),下部桩侧摩阻力相应增大(增幅20%);降温时反之。此外,流变效应长期作用下,上部桩侧逐渐发挥承载性能,摩阻力增大(增幅50%),深部相应降低(降幅14%),中性点在2/5桩长处。桩底压力与桩侧摩阻力存在严格的联动机制;整个桩长范围内桩侧摩阻力分布也存在上、下联动机制,某一深度处桩侧摩阻力的变化受控于整个桩体受力状态与其发展趋势。流变与冻融循环耦合作用,影响桩侧摩阻力的深度分布形态,使得桩基础承载模式动态变化,对桩基础服役性能存在显著影响。研究成果揭示了冻土地基中流变效应对桩基础长期服役性能的显著影响,将为进一步的仿真研究提供参考与借鉴,并为冻土区桩基础设计、施工及运维提供理论支撑。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
施 瑞1
2
温 智1
2
王 旭1
关键词 桩基础冻土地基接触面流变效应长期服役性能数值仿真    
Abstract:Mechanical properties of contact interfaces have significant dynamic fluctuations due to freeze-thaw cycles and rheological effect,which directly affects the long-term service performance of piles in permafrost environments,and remains to be further studied. To employing numerical simulation,firstly,a visco-elastic-plastic constitutive model for frozen soil considering the rheological effect was constructed. Secondly,the conventional Kelvin model was improved and a visco-elastic constitutive model for the contact interface between frozen soil and pile was constructed. Furthermore,a thermal-mechanical fully coupling model was established considering the rheological effect of both frozen soil and the contact interface. Verified by laboratory model test,this model was employed to reveal the evolution law of long-term service performance of pile. Results show that:The proposed contact interface model can reflect the influence of stress level on rheological effect. During the freeze-thaw cycle,the shaft resistance gradually decreased(39%) on the upper pile as the ground temperature rose,while accompanied by a corresponding increase(20%) on the lower pile. The reverse is true when the ground temperature drops. In addition,under the long-term rheological effect,the bearing capacity gradually exerts in the upper pile and the shaft resistance increases(50%),while a 14% decrease in the deep pile correspondingly. The neutral point is at 2/5 pile length. In the end,there is a strict linkage mechanism between tip resistance and shaft resistance. In the whole pile length,the distribution of shaft resistance also has an up-down linkage mechanism,and the change of shaft resistance at a certain depth is governed by the stress state and its development trend of the whole pile. The coupling effect of rheology and freeze-thaw cycles affects the depth distribution of shaft resistance,which results in a dynamical changes in bearing mode of the pile,and ultimately has a significant influence on the service performance of the pile. Research results reveal the significant influence of rheological effect on the long-term service performance of piles in permafrost ground,which would offer a reference and basis for further simulation research,and provide theoretical support for the design,construction,operation,and maintenance of piles in permafrost regions.
Key wordspile foundation    frozen ground    contact interface    rheological effect    long-term service performance    numerical simulation
    
引用本文:   
施 瑞1,2,温 智1,2,王 旭1. 考虑冻土–桩接触面流变效应的基础长期服役性能演变[J]. 岩石力学与工程学报, 2025, 44(S1): 262-272.
SHI Rui1,2,WEN Zhi1,2,WANG Xu1. Evolution of long-term service performance of foundation considering rheological effect of contact interface between frozen soil and pile. , 2025, 44(S1): 262-272.
链接本文:  
https://rockmech.whrsm.ac.cn/CN/10.3724/1000-6915.jrme.2024.0240      或      https://rockmech.whrsm.ac.cn/CN/Y2025/V44/IS1/262
版权所有 © 2005-2016 《岩石力学与工程学报》编辑部
   主办单位:中国岩石力学与工程学会 出版单位:科学出版社
地址:湖北省武汉市武昌小洪山(邮编:430071) 电话:(027)87199250 传真:(027)87199250 E-mail: rock@whrsm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:010-82358270,E-mail: support@magtech.com.cn
鄂公网安备 42010602003581号