[1] |
郜新军,李铭远,张景伟,等. 富水粉质黏土中地铁联络通道冻结法试验研究[J]. 岩石力学与工程学报,2021,40(6):1 267–1 276. (GAO Xinjun,LI Mingyuan,ZHANG Jingwei,et al. Field research on artificial freezing of subway cross passages in water-rich silty clay layers[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1 267–1 276.(in Chinese))
|
[2] |
任 辉,胡向东,洪泽群,等. 超浅埋暗挖隧道管幕冻结法积极冻结方案试验研究[J]. 岩土工程学报,2019,41(2):320–329.(REN Hui,HU Xiangdong,HONG Zequn,et al. Experimental study on active freezing scheme of freeze-sealing pipe roof used in ultra-shallow buried tun-nels[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):320–329.(in Chinese))
|
[3] |
HU X D,DENG S J,REN H. In situ test study on freezing scheme of freeze-sealing pipe roof applied to the Gongbei tunnel in the Hong Kong—Zhuhai—Macau bridge[J]. Applied Sciences,2017,7(1):27.
|
[4] |
陈 拓,赵光思,赵 涛. 寒区黏土与结构接触面冻结强度特性试验研究[J]. 地震工程学报,2018,40(3):512–518.(CHEN Tuo,ZHAO Guangsi,ZHAO Tao. Experimental study on the freezing strength characteristics of clay-structure interface in cold regions[J]. China Earthquake Engineering Journal,2018,40(3):512–518.(in Chinese))
|
[5] |
赵联桢,杨 平,王海波. 大型多功能冻土–结构接触面循环直剪系统研制及应用[J]. 岩土工程学报,2013,35(4):707–713.(ZHAO Lianzhen,YANG Ping,WANG Haibo. Development and application of large-scale multi-functional frozen soil-structure interface cycle-shearing system[J]. Chinese Journal of Geotechnical Engineering,2013,35(4):707–713.(in Chinese))
|
[6] |
石泉彬,杨 平,谈金忠,等. 冻土与结构接触面冻结强度压桩法测定系统研制及试验研究[J]. 岩土工程学报,2019,41(1):139–147.(SHI Quanbin,YANG Ping,TAN Jinzhong,et al. Development of measuring system by pile-pressing method and experimental study on adfreezing strength at interface between frozen soil and structure[J]. Chinese Journal of Geotechnical Engineering,2019,41(1):139–147. (in Chinese))
|
[7] |
石泉彬,杨 平,王国良. 人工冻结砂土与结构接触面冻结强度试验研究[J]. 岩石力学与工程学报,2016,35(10):2 142–2 151.(SHI Quanbin,YANG Ping,WANG Guoliang. Experimental study on adfreezing strength of the interface between artificial frozen sand and structure[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(10):2 142–2 151.(in Chinese))
|
[8] |
石泉彬,杨 平. 冻结粉细砂与钢板接触面剪切统计损伤模型构建[J]. 铁道科学与工程学报,2021,18(10):2 591–2 599.(SHI Quanbin,YANG Ping. Construction of statistical shear damage model at the interface between frozen fine sand and steel plate[J]. Journal of Railway Science and Engineering,2021,18(10):2 591–2 599.(in Chinese))
|
[9] |
ZHAO L,YANG P,WANG J,et al. Cyclic direct shear behaviors of frozen soil-structure interface under constant normal stiffness condition[J]. Cold Regions Science and Technology,2014,102:52–62.
|
[10] |
ZHAO L,YANG P,WANG J,et al. Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt-structure interface[J]. Cold Regions Science and Technology,2014,106/107:183–193.
|
[11] |
ZHAO L,YANG P,ZHANG L,et al. Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature[J]. Cold Regions Science and Technology,2016,133:70–81.
|
[12] |
杨进财. 高温冻土–混凝土接触面剪切蠕变特性试验研究[硕士学位论文][D]. 兰州:兰州交通大学,2020.(YANG Jincai. Experimental research on the shear creep behaviors of warm permafrost-concrete interface[M. S. Thesis][D]. Lanzhou:Lanzhou Jiaotong University,2020.(in Chinese))
|
[13] |
刘俊俊. 冻结粉质黏土与混凝土桩接触面流变特性试验研究[硕士学位论文][D]. 兰州:兰州交通大学,2016.(LIU Junjun. Experimental study on rheological properties of frozen silty clay-concrete pile interface[M. S. Thesis][D]. Lanzhou:Lanzhou Jiaotong University,2016.(in Chinese))
|
[14] |
李君善. 冻结砂土与混凝土接触面的剪切蠕变特性试验研究[硕士学位论文][D]. 兰州:兰州交通大学,2021.(LI Junshan. Experimental study on shear creep behavior of contact surface between frozen sand and concrete[M. S. Thesis][D]. Lanzhou:Lanzhou Jiaotong University,2021.(in Chinese))
|
[15] |
何 菲. 冻结粉土–混凝土界面非线性剪切蠕变特性研究[博士学位论文][D]. 兰州:兰州交通大学,2019.(HE Fei. Research on the nonlinear shear creep behaviors of frozen silt-concrete interface[Ph. D. Thesis][D]. Lanzhou:Lanzhou Jiaotong University,2019.(in Chinese))
|
[16] |
何 菲,陈航杰,王 旭,等. 考虑粗糙度影响的冻结砂土–混凝土接触面蠕变特性研究[J]. 铁道科学与工程学报, 2023,20(1):200–209.(HE Fei,CHEN Hangjie,WANG Xu,et al. Study on creep characteristics of frozen sand-concrete interface considering the influence of interface roughness[J]. Journal of Railway Science and Engineering,2023,20(1):200–209.(in Chinese))
|
[17] |
于 通,王颖轶,王荣勇,等. 基于稳定蠕变模型的软土地层桩基位移理论解[J]. 应用力学学报,2022,39(4):690–697.(YU Tong,WANG Yingyi,WANG Rongyong,et al. Theoretical solution of pile foundation displacement based on stable creep model in soft soil layer[J]. Chinese Journal of Applied Mechanics,2022,39(4):690–697.(in Chinese))
|
[18] |
汪 优,任加琳,李 赛,等. 土–结构接触面剪切全过程本构关系研究[J]. 湖南大学学报:自然科学版,2021,48(3):144–152. (WANG You,REN Jialin,LI Sai,et al. Study on shear constitutive relation of soil-structure interface in whole process[J]. Journal of Hunan University:Natural Science,2021,48(3):144–152.(in Chinese))
|
[19] |
HOU F,LAI Y,LIU E,et al. A creep constitutive model for frozen soils with different contents of coarse grains[J]. Cold Regions Science and Technology,2018,145:119–126.
|
[20] |
刘志强,王 博,王 涛,等. 高压冻(融)土–结构接触面剪切应力–应变关系[J]. 哈尔滨工业大学学报,2021,53(5):134–140. (LIU Zhiqiang,WANG Bo,WANG Tao,et al. Shear stress-strain relation of frozen/thawed soil-structure interface under high pressure[J]. Journal of Harbin Institute of Technology,2021,53(5):134–140.(in Chinese))
|
[21] |
王荣勇,柳林齐,王颖轶,等. 基于虚拟柱状等效模型的桩基沉降位移计算方法[J]. 上海交通大学学报,2021,55(9):1 126–1 133. (WANG Rongyong,LIU Lingqi,WANG Yingyi,et al. Calculation method of pile foundation settlement displacement based on virtual column equivalent model[J]. Journal of Shanghai Jiaotong University,2021,55(9):1 126–1 133.(in Chinese))
|
[22] |
杨 武,侍克斌,何建新,等. 不同膜厚复合土工膜的蠕变特性及模型研究[J]. 岩土工程学报,2021,43(5):955–961.(YANG Wu,SHI Kebin,HE Jianxin,et al. Creep characteristics and model study of composite geomembrane with different film thickness[J]. Chinese Journal of Geotechnical Engineering,2021,43(5):955–961.(in Chinese))
|
[23] |
LIAO M,LAI Y,LIU E,et al. A fractional order creep constitutive model of warm frozen silt[J]. Acta Geotechnica,2017,12(2):377–389.
|
[24] |
KURT A,CENESIZ Y,TASBOZAN O. On the solution of burgers? equation with the new fractional derivative[J]. Open Physics,2015,13(1):355–360.
|
[25] |
OKUKA A Z. Formulation of thermodynamically consistent fractional burgers models[J]. Acta Mechanica,2018,229(8):3 557–3 570.
|
[26] |
管佩瑶,梁英杰. 黏弹性材料特慢蠕变的局部结构导数本构模型[J]. 重庆大学学报,2022,45(3):49–61.(GUAN Peiyao,LIANG Yingjie. Local structural derivative constitutive model of ultra-slow creep in viscoelastic materials[J]. Journal of Chongqing University,2022,45(3):49–61.(in Chinese))
|
[27] |
ZHU Z,LUO F,ZHANG Y,et al. A creep model for frozen sand of Qinghai-Tibet based on Nishihara model[J]. Cold Regions Science and Technology,2019,167:1–10.
|
[28] |
LI D,ZHANG C,DING G,et al. Fractional derivative-based creep constitutive model of deep artificial frozen soil[J]. Cold Regions Science and Technology,2020,170:1–11.
|
[29] |
童立红,吴琳琳,徐长节. 基于Maxwell分布的砂岩本构模型研究[J]. 铁道科学与工程学报,2022,19(4):958–965.(TONG Lihong,WU Linlin,XU Changjie. Study on constitutive model of sandstone based on Maxwell distribution[J]. Journal of Railway Science and Engineering,2022,19(4):958–965.(in Chinese))
|
[30] |
朱铨雯. 珠海软土宏微观蠕变试验及非线性模型研究[硕士学位论文][D]. 广州:广州大学,2020.(ZHU Quanwen. Research on macro and micro creep test and nonlinear model of zhuhai soft soil[M. S. Thesis][D]. Guangzhou:Guangzhou University,2020.(in Chinese))
|
[31] |
孙 凯,陈正林,陈 剑,等. 一种基于修正西原模型的冻土蠕变本构关系[J]. 岩土力学,2015,36(增1):142–146.(SUN Kai,CHEN Zhenglin,CHEN Jian,et al. A modified creep constitutive equation for frozen soil based on Nishihara model[J]. Rock and Soil Mechanics,2015,36(Supp.1):142–146.(in Chinese))
|
[32] |
孙 凯,陈正林,陈 剑,等. 基于分数阶导数的冻土蠕变本构模型[J]. 地下空间与工程学报,2018,14(1):19–25.(SUN Kai,CHEN Zhenglin,CHEN Jian,et al. A creep constitutive model for frozen soil based on fractional derivative[J]. Chinese Journal of Underground Space and Engineering,2018,14(1):19–25.(in Chinese))
|
[33] |
马宏亮,郑健捷,刘 强,等. 基于非线性最小二乘法的多光谱拟合程序:应用于12CH4谱线参数分析[J]. 光谱学与光谱分析,2021,41(12):3 887–3 891.(MA Hongliang,ZHENG Jianjie,LIU Qiang,et al. A multispectrum fitting program based on non-linear least-squares method for line parameters:application to 12CH4[J]. Spectroscopy and Spectral Analysis,2021,41(12):3 887–3 891.(in Chinese))
|
[34] |
DARIUSZ I. Riemann-Liouville derivatives of abstract functions and Sobolev spaces[J]. Fractional Calculus and Applied Analysis,2022,25:1 260–1 293.
|
[35] |
SEZHIN K. Digital circuit implementation and PRNG-based data security application of variable-order fractional Hopfield neural network under electromagnetic radiation using Grunwald-Letnikov method[J]. The European Physical Journal Special Topics,2022,231:1 969–1 981.
|
[36] |
LUKAS P. On a discrete composition of the fractional integral and Caputo derivative[J]. Communications in Nonlinear Science and Numerical Simulation,2022,108:1–7.
|
[37] |
段晓梦,殷德顺,安丽媛,等. 基于分数阶微积分的黏弹性材料变形研究[J]. 中国科学:物理学 力学 天文学,2013,43(8):971–977. (DUAN Xiaomeng,YIN Deshun,AN Liyuan,et al. The deformation study in viscoelastic materials based on fractional order calculus[J]. Scientia Sinica:Physica,Mechanica and Astronomica,2013,43(8):971–977.(in Chinese))
|
[38] |
TIAN D L,ZHOU X P. A viscoelastic model of geometry-constraint-based non-ordinary state-based peridynamics with progressive damage[J]. Computational Mechanics,2022,69:1 413–1 441.
|
[39] |
张 超,杨楚卿,白 允. 岩石类脆性材料损伤演化分析及其模型方法研究[J]. 岩土力学,2021,42(9):2 344–2 354.(ZHANG Chao,YANG Chuqing,BAI Yun. Investigation of damage evolution and its model of rock-like brittle materials[J]. Rock and Soil Mechanics,2021,42(9):2 344–2 354.(in Chinese))
|
[40] |
冯大阔,张建民. 法向应力对接触面循环单剪力学特性的影响研究[J]. 岩土力学,2021,42(1):18–26.(FENG Dakuo,ZHANG Jianmin. Effect of normal stress on cyclic simple-shear behavior of gravel-structure interface[J]. Rock and Soil Mechanics,2021,42(1): 18–26.(in Chinese))
|
[41] |
中华人民共和国国家标准编写组. GB/T 50123—2019土工试验方法标准[S]. 北京:中国计划出版社,2019.(The National Standards Compilation Group of People?s Republic of China. GB/T 50123—2019 Standard for soil method[S]. Beijing:China Planning Publishing House,2019.(in Chinese))
|