Abstract:To enhance the seismic design of rigid-faced reinforced soil retaining walls for high-speed railways in China, this study integrates shaking table tests with numerical simulations to analyze post-earthquake horizontal displacement, settlement, and structural acceleration responses, with a particular focus on the mechanical behavior of geogrids under seismic action. The key findings are as follows: (1) the analysis utilizing the peak ground acceleration (PGA) amplification factor effectively evaluates the overall dynamic characteristics of the structure. Both composite and monolithic facings exhibit similar deformation patterns, primarily undergoing rotational deformation during seismic events. (2) The mechanical behavior of geogrids under seismic conditions can be characterized by three parameters: elongation, displacement, and strain. The results indicate that pullout failure is more prevalent than tensile failure in these structures. (3) The intensity of seismic activity significantly influences geogrid mechanisms. During low-intensity earthquakes, the potential failure surface resembles a “0.3H” shape, shifting to “0.14H” when connector effects are disregarded. Conversely, during strong earthquakes, the insufficient pullout resistance of upper geogrids results in compensatory effects in the middle geogrids, leading to an “S”-shaped failure surface. (4) The anchored wedge method employed in strong earthquake design tends to underestimate the load transfer role of middle geogrids, resulting in excessively conservative designs. (5) The mechanical mechanisms of geogrids affect the distribution characteristics of surface settlement, which displays a bimodal pattern with peaks occurring near the panel (0.05H) and at the end of the geogrid. These insights provide valuable guidance for the design of reinforced soil retaining walls in high-speed railway projects.
叶阳升,蔡德钩,张千里,等. 高速铁路路基结构设计方法现状与发展趋势[J]. 中国铁道科学,2021,42(3):1-12.(YE Yangsheng,CAI Dehou,ZHANG Qianli,et al. Current status and development trend of structural design methods for high-speed railroad roadbed[J]. China Railway Science,2021,42(3):1-12.(in Chinese))
[2]
FUMIO T,MASARU T,JUNICHI K,et al. Geosynthetic-reinforced soil structures for railways in Japan[J].Transportation Infrastructure Geotechnology,2014,1(1):3-53.
[3]
SABERMAHANI M,GHALANDARZADEH A,FAKHER A. Experimental study on seismic deformation modes of reinforced-soil walls[J]. Geotextiles and Geomembranes,2009,27(2):121-136.
[4]
蒋关鲁,徐 鹏,王智猛. 组合式面板加筋土挡墙模型试验研究[J]. 铁道建筑,2018,58(1):118-120.(JIANG Guanlu,XU Peng,WANG Zhimeng. Model test research on combined panel reinforced soil retaining wall[J]. Railway Construction,2018,58(1):118-120.(in Chinese))
[5]
杨广庆,牛笑笛,周诗广,等. 复合式整体刚性面板加筋土挡墙结构行为试验研究[J]. 岩土力学,2021,42(7):1 794-1 802.(YANG Guangqing,NIU Xiaodi,ZHOU Shiguang,et al. Experimental study on structural behavior of composite monolithic rigid panel reinforced soil retaining wall[J]. Rock and Soil Mechanics,2021,42(7):1 794- 1 802.(in Chinese))
[6]
王家全,仲文涛,黄世斌,等. 模块式加筋土挡墙模型试验及静动力学性能研究[J]. 岩土力学,2023,44(5):1 435-1 444.(WANG Jiaquan,ZHONG Wentao,HUANG Shibin,et al. Model test and static dynamic performance study of modular reinforced soil retaining wall[J]. Rock and Soil Mechanics,2023,44(5):1 435-1 444.(in Chinese))
[7]
李思汉,蔡晓光,景立平,等. 基于位移的模块式加筋土挡墙抗震设计方法研究[J]. 地震工程学报,2023,45(5):1 066-1 074.(LI Sihan,CAI Xiaoguang,JING Liping,et al. Research on displacement- based seismic design method for modular reinforced soil retaining walls[J]. Journal of Earthquake Engineering,2023,45(5):1 066- 1 074.(in Chinese))
[8]
刘华北. 横向地震作用下土工合成材料加筋土挡墙筋材拉力分析[J]. 岩土工程学报,2022,44(2):288-294.(LIU Huabei. Reinforcement loads of geosynthetic-reinforced soil retaining walls under horizontal earthquake loading[J]. Chinese Journal of Geotechnical Engineering,2022,44(2):288-294.(in Chinese))
[9]
陈建峰,柳军修,石振明. 软土地基加筋土挡墙数值模拟及稳定性探讨[J]. 岩石力学与工程学报,2012,31(9):1 928-1 935.(CHEN Jianfeng,LIU Junxiu,SHI Zhenming. Numerical simulation and stability of reinforced soil retaining wall on soft ground[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1 928- 1 935.(in Chinese))
[10]
BALAKRISHNAN S,VISWANADHAM B V S. Centrifuge model studies on the performance of soil walls reinforced with sand- cushioned geogrid layers[J]. Geotextiles and Geomembranes,2019,47(6):803-814.
[11]
YAZDANDOUST M. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test[J]. Soil Dynamics and Earthquake Engineering,2017,97:216-232.
[12]
靳 静,杨广庆,王志杰,等. 多级加筋土高挡墙的工程特性及影响因素[J]. 中国铁道科学,2019,40(1):8-16.(JIN Jing,YANG Guangqing,WANG Zhijie,et al. Engineering characteristics and influencing factors of multistage reinforced soil high retaining wall[J]. China Railway Science,2019,40(1):8-16.(in Chinese))
[13]
EL-EMAM M M,BATHURST R J. Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls[J]. Geotextiles and Geomembranes,2007,25(1):33-49.
[14]
李福秀,郭文灏,郑烨炜. 刚性墙面双面加筋土挡墙动力响应振动台模型试验研究[J]. 岩土力学,2024,45(7):1 957-1 966.(LI Fuxiu,GUO Wenhao,ZHENG Yewei. Study on dynamic response shaking table modeling of double-sided reinforced soil retaining walls with rigid walls[J]. Rock and Soil Mechanics,2024,45(7):1 957- 1 966.(in Chinese))
[15]
王 贺,杨广庆,熊保林,等. 模块面板式加筋土挡墙结构行为试验研究[J]. 岩土力学,2016,37(2):487-498.(WANG He,YANG Guangqing,XIONG Baolin,et al. Experimental study on structural behavior of modular panel-type reinforced soil retaining wall[J]. Rock and Soil Mechanics,2016,37(2):487-498.(in Chinese))
[16]
王 贺,杨广庆,吴连海,等. 墙顶荷载对加筋土挡墙工作特性影响的试验研究[J]. 岩石力学与工程学报,2014,33(12):2 573- 2 581.(WANG He,YANG Guangqing,WU Lianhai,et al. Experimental study on the effect of top load on the working characteristics of reinforced soil retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(12):2 573-2 581.(in Chinese))
[17]
蔡晓光,李思汉,黄 鑫. 水平地震作用下双级加筋土挡墙格栅应变及破裂面分析[J]. 岩土工程学报,2018,40(8):1 528-1 534.(CAI Xiaoguang,LI Sihan,HUANG Xin. Analysis of grid strain and rupture surface of two-stage reinforced soil retaining wall under horizontal seismic action[J]. Chinese Journal of Geotechnical Engineering,2018,40(8):1 528-1 534.(in Chinese))
[18]
曹礼聪,张建经,付 晓,等. 条带式刚性面板加筋土挡墙筋带应变响应特性研究[J]. 岩石力学与工程学报,2017,36(7):1 768- 1 779.(CAO Licong,ZHANG Jianjing,FU Xiao,et al. Strain response of the stripe reinforced soil with rigid retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(7):1 768- 1 779.(in Chinese))
[19]
赵晓彦,范宇飞,刘 亮,等. 铁路台阶式加筋土挡墙潜在破裂面特征模型试验[J]. 岩土力学,2019,40(6):2 108-2 118.(ZHAO Xiaoyan,FAN Yufei,LIU Liang,et al. Modeling test of potential rupture surface characteristics of railroad step-type reinforced soil retaining wall[J]. Rock and Soil Mechanics,2019,40(6):2 108- 2 118.(in Chinese))
[20]
日本铁道综合技术研究所. 鉄道構造物等設計標準•同解説-土構 造物[S]. 东京:丸善出版,2013.(Japan Railway Research Institute. Design criteria for railway structures,etc.-same explanation-earth structures[S]. Tokyo:Maruzen Publishing,2013.(in Japanese))
[21]
RRR建设体系协会. RRR-B工法(剛壁面盛土補強土擁壁工法)設計•施エマニュアル[S]. 日本,东京:RRR建設システム協会,2021.(RRR Construction Systems Association. RRR reinforced soil retaining wall design and construction manual[S]. Tokyo,Japan:Tokyo:RRR Construction Systems Association,2021.(in Japanese))
[22]
中华人民共和国行业标准编写组. TB10025—2019 铁路路基支挡结构设计规范[S]. 北京:中国铁道出版社,2020.(The Professional Standards Compilation Group of People?s Republic of China. TB10025—2019 Code for design of railway subgrade retaining structure[S]. Beijing:China Railway Publishing House,2020.(in Chinese))
[23]
YAZDANDOUST M. Seismic performance of soil-nailed walls using a 1g shaking table[J]. Canadian Geotechnical Journal,2018,55(1):1-18.
[24]
卢 谅,张均均,马书文,等. 预应力返包式加筋土挡墙的动力响应分析[J]. 岩土工程学报,2020,42(2):344-353.(LU Liang,ZHANG Junjun,MA Shuwen,et al. Dynamic response analysis of prestressed repacked reinforced soil retaining wall[J]. Chinese Journal of Geotechnical Engineering,2020,42(2):344-353.(in Chinese))
[25]
朱宏伟,项 琴,赖 军. 基于增量动力分析的加筋土挡墙抗震性能评估[J]. 振动与冲击,2021,40(19):261-268.(ZHU Hongwei,XIANG Qin,LAI Jun. Seismic performance assessment of reinforced soil retaining walls based on incremental dynamic analysis[J]. Vibration and Shock,2021,40(19):261-268.(in Chinese))
[26]
徐 鹏,蒋关鲁,邱俊杰,等. 整体刚性面板加筋土挡墙振动台模型试验研究[J]. 岩土力学,2019,40(3):998-1 004.(XU Peng,JIANG Guanlu,QIU Junjie,et al. Shaking table tests on reinforced soil retaining walls with full-height rigid facing[J]. Rock and Soil Mechanics,2019,40(3):998-1 004.(in Chinese))
[27]
潘申鑫,蒋关鲁,袁胜洋,等. 高速铁路整体刚性面板加筋土挡墙地震作用下服役性能研究[J]. 岩土力学,2025.(PAN Shenxin,JIANG Guanlu,YUAN Shengyang,et al. Study on service performance of reinforced soil retaining wall with integral rigid facing of high-speed railway under seismic action[J]. Rock and Soil Mechanics,2025. DOI:10.16285/j.rsm.2024.1049.(in Chinese))
[28]
中华人民共和国行业标准编写组. TB10621—2014 高速铁路设计规范[S]. 北京:中国铁道出版社,2014.(The Professional Standards Compilation Group of People?s Republic of China. TB10621—2014 Design specification for high-speed railroad[S]. Beijing:China Railway Publishing House,2014.(in Chinese))
[29]
中华人民共和国行业标准编写组. TB1001—2016 铁路路基设计规范[S]. 北京:中国铁道出版社,2020.(The Professional Standards Compilation Group of People?s Republic of China. TB1001—2016 Design specification for railroad roadbed[S]. Beijing:China Railway Publishing House,2020.(in Chinese))
[30]
雷 达,邓 平,李泓枢,等. 抗滑桩加固滑坡上桥梁桩基础的动力响应试验研究[J]. 中国铁道科学,2023,44(2):73-82.(LEI Da,DENG Ping,LI Hongshu,et al. Experimental study on dynamic response of bridge pile foundation reinforced by anti-slide pile on landslide[J]. China Railway Science,2023,44(2):73-82.(in Chinese))
[31]
冯海洲,蒋关鲁,何梓雷,等. 框架梁与锚索桩板墙加固隧道洞口边坡的动力响应特性[J]. 中国铁道科学,2024,45(2):134-145. (FENG Haizhou,JIANG Guanlu,HE Zilei,et al. Dynamic response characteristics of tunnel portal slope reinforced by frame beam and anchor cable pile sheet wall[J]. China Railway Science,2024,45(2):134-145.(in Chinese))
[32]
徐 鹏. 高烈度地震下刚性面板加筋土挡墙的动态响应研究[博士学位论文][D]. 成都:西南交通大学,2020.(XU Peng. Study on the dynamic response of rigid panel reinforced soil retaining walls under high intensity earthquakes[Ph. D. Thesis][D]. Chengdu:Southwest Jiaotong University,2020.(in Chinese))
[33]
British Standards Institution. BS 8006-1 Code of practice for strengthened/reinforced soils and other fills[S]. London:BSI Standards Limited,2010.
[34]
National Highway Institute. FHWA-NHI-10-024 Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines[S]. Washington,DC:Federal Highway Administration,2009.
[35]
中华人民共和国国家标准编写组. GB/T50290—2014土工合成材料应用技术规范[S]. 北京:中国计划出版社,2014.(The National Standards Compilation Group of People?s Republic of China. GB/T50290—2014 Technical specification for application of geosynthetics[S]. Beijing:China Planning Press,2014.(in Chinese))
[36]
中华人民共和国国家标准编写组. GB50111—2006 铁路工程抗震设计规范[S]. 北京:中国计划出版社,2009.(The National Standards Compilation Group of People?s Republic of China. GB50241—2006 Code for seismic design of railroad engineering [S]. Beijing:China Planning Press,2009.(in Chinese))
[37]
中华人民共和国行业标准编写组. JTG D30—2015公路路基设计规范[S]. 北京:人民交通出版社,2015.(The Professional Standards Compilation Group of People?s Republic of China. JTG D30—2015 Design specification for highway roadbed[S]. Beijing:China Communications Press,2015.(in Chinese))
[38]
中华人民共和国行业标准编写组. T/CRS C0601—2021铁路路基土工合成材料应用技术规程[S]. 北京:中国铁道出版社,2023.(The Professional Standards Compilation Group of People?s Republic of China. T/CRS C0601—2021 Technical specification for application of geosynthetics in railway road base[S]. Beijing:China Railway Publishing House,2023.(in Chinese))
[39]
American Association of State Highway and Transportation Officials. Aashto lrfd bridge design specifications[S]. 5th ed. Washington,DC:Aashto,2012.
Deutsche Gesellschaft für Geotechnik e.V.(DGGT). EBGEO:recommendations for design and analysis of earth structures using geosynthetic reinforcements[S]. Berlin:Ernst and Sohn,2010.