Study on vertical cross-interface expansion and permeability characteristics of N2 foam fracturing cracks in coal measures reservoirs
CHAI Wangyang1, LI Wenda1, LIANG Weiguo1, 2, WANG Zaiyong1, REN Sentao1, LUO Hongye1
(1. Key Laboratory of In-situ Modified Mining Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; 2. School of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China)
Abstract: Indirect fracturing technology is frequently employed to enhance the exploitation of coalbed methane (CBM) in fractured, low-permeability coal seams. Investigating the vertical cross-interface propagation behavior of fracturing cracks in different fracturing media is crucial for improving vertical communication and permeability enhancement in reservoirs. This study conducted experimental research on the cross-interface propagation of true triaxial hydraulic fractures in coal-rock combinations, utilizing water, N2 gas, and N2 foam under varying vertical stress difference coefficients (Kv). The evolution law of injection pressure, dynamic response characteristics of acoustic emission (AE), fracture propagation morphology and fracture surface conductivity difference were compared and analysed, and the vertical communication and permeability enhancement effects of different fracturing media were comprehensively evaluated. The results indicate that: (1) Regarding the evolution of liquid injection and AE dynamic response, under identical Kv conditions, N2 foam fracturing exhibits characteristics of extended pressurization time, higher fracture pressure, greater AE energy, fewer cumulative ringing counts, and concentrated frequencies of fracture initiation and propagation events. (2) Concerning fracture network morphology, N2 foam fracturing tends to create a penetrating two-wing fracture network with extensive vertical extension and expansion. Compared to water and N2 gas, it facilitates better vertical communication and permeability enhancement in multi-layered reservoirs during indirect fracturing. (3) For vertical cross-interface expansion of fracturing cracks, the critical cross-layer Kv values for N2 foam, water, and N2 gas are 0.28, 0.39, and 0.50, respectively. N2 foam can achieve cross-interface expansion of coal and rock masses under lower Kv conditions, broadening the application range of indirect fracturing technology. (4) In terms of fracture network conductivity, at Kv = 0.50, the in-situ reinjection pressure for N2 foam fracturing is 9.14 and 10.19 MPa lower than that for water and N2 gas, respectively. Additionally, the fracture opening post-fracturing is 0.108 5 and 0.169 6 mm larger than those for water and N2 gas, respectively. The lower in-situ reinjection pressure and larger fracture opening suggest that the conductivity of the N2 foam fracture network is superior. (5) Regarding permeability characteristics, seepage simulation results reveal that the permeability of the fracture network post-N2 foam pressure is 2.95 and 11.86 times that of N2 gas and water, respectively. In summary, compared to water and N2 gas fracturing, N2 foam, with its high viscosity and low filtration properties, more effectively promotes fracture vertical cross-interface expansion and permeability enhancement, making it more suitable for the indirect fracturing of coal measure reservoirs.
柴望阳1,李文达1,梁卫国1,2,王在勇1,任森涛1,落弘业1. 煤系储层N2泡沫压裂裂缝垂向跨界面扩展与渗透性特征研究[J]. 岩石力学与工程学报, 2025, 44(6): 1596-1611.
CHAI Wangyang1, LI Wenda1, LIANG Weiguo1, 2, WANG Zaiyong1, REN Sentao1, LUO Hongye1. Study on vertical cross-interface expansion and permeability characteristics of N2 foam fracturing cracks in coal measures reservoirs. , 2025, 44(6): 1596-1611.
李树刚,张静非,尚建选,等.双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报,2022,47(4):1 416-1 429.(LI Shugang,ZHANG Jingfei,SHANG Jianxuan,et al. Conception and connotation of gas simultaneous mining technology system under dual carbon target[J]. Journal of China Coal Society,2022,47(4):1 416-1 429.(in Chinese))
[2]
秦 勇,申 建,史 锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371-387.(QIN Yong,SHEN Jian,SHI Rui. Strategic value and strategic choice of coal measure gas industry construction in China[J]. Journal of China Coal Society,2022,47(1):371-387.(in Chinese))
[3]
秦 勇,申 建,李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业,2022,42(6):19-32.(QIN Yong,SHEN Jian,LI Xiaogang. Control degree and reliability analysis of coalbed methane resources in China[J]. Natural Gas Industry,2022,42(6):19-32.(in Chinese))
[4]
徐凤银,侯 伟,熊先钺,等. 中国煤层气产业现状与发展战略[J].石油勘探与开发,2023,50(4):669-682.(XU Fengyin,HOU Wei,XIONG Xianyue,et al. China 's CBM industry status and development strategy[J]. Petroleum Exploration and Development,2023,50(4):669-682.(in Chinese))
[5]
庞 涛,姜在炳,李浩哲,等. 碎软煤层顶板水平井空间位置对压裂裂缝扩展的影响[J]. 煤炭学报,2022,47(增1):196-203.(PANG Tao,JIANG Zaibing,LI Haozhe,et al. Effect of spatial position of hor-izontal well in broken soft coal seam roof on fracture propagation[J]. Journal of China Coal Society,2022,47(Supp.1):196-203.(in Chinese))
[6]
李 勇,陈 涛,马啸天,等. 煤层顶板间接压裂裂缝扩展机制及影响因素[J]. 煤炭科学技术,2024,52(2):171-182.(LI Yong,CHEN Tao,MA Xiaotian,et al. Indirect fracturing crack propagation mechanism and influencing factors of coal seam roof[J]. Coal Science and Technology,2024,52(2):171-182.(in Chinese))
[7]
李 浩,梁卫国,李国富,等. 碎软煤层韧性破坏-渗流耦合本构关系及其间接压裂工程验证[J]. 煤炭学报,2021,46(3):924-936.(LI Hao,LIANG Weiguo,LI Guofu,et al. Ductile failure-seepage coupling constitutive relation of broken soft coal seam and its indirect fracturing engineering verification[J]. Journal of China Coal Society,2021,46(3):924-936.(in Chinese))
[8]
LIU J,YAO Y,LIU D,et al. Experimental simulation of the hydraulic fracture propagation in an anthracite coal reservoir in the southern Qinshui basin,China[J]. Journal of Petroleum Science and Engineering,2018,168:400-408.
[9]
张 群,葛春贵,李 伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159.(ZHANG Qun,GE Chungui,LI Wei,et al. High-efficiency coalbed methane ex-traction mode of horizontal well staged fracturing in broken soft low permeability coal seam roof[J]. Journal of China Coal Society,2018,43(1):150-159.(in Chinese))
[10]
LI H,LIANG W,JIANG Y,et al. Numerical study on the field-scale criterion of hydraulic fracture crossing the interface between roof and broken low-permeability coal[J]. Rock Mechanics and Rock Engineering,2021,54(9):4 543-4 567.
[11]
FU W,AMES B C,BUNER A P,et al. Impact of partially cemented and non-persistent natural fractures on hydraulic fracture propagation[J]. Rock Mechanics and Rock Engineering,2016,49:4 519-4 526.
[12]
JIANG T,ZHANG J,WU H. Experimental and numerical study on hydraulic fracture propagation in coalbed methane reservoir[J]. Journal of Natural Gas Science and Engineering,2016,35:455-467.
[13]
XIONG D,MA X,ZHANG S,et al. The influence of bedding interface strength on the vertical propagation of hydraulic fractures[J]. Physics of Fluids,2024,36(5):056610.
[14]
TAN P,JIN Y,HAN K,et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel,2017,206:482-493.
[15]
TAN P,JIN Y,HAN K,et al. Vertical propagation behavior of hydraulic fractures in coal measure strata based on true triaxial expediment[J]. Journal of Petroleum Science and Engineering,2017,158:398-407.
[16]
付世豪,陈 勉,夏 阳,等. 煤系页岩储层水力裂缝穿层扩展规律[J]. 断块油气田,2021,28(4):555-560.(FU Shihao,CHEN Mian,XIA Yang,et al. Hydraulic fracture propagation law of coal-bearing shale reservoir[J]. Fault Block Oil and Gas Field,2021,28(4):555-560.(in Chinese))
[17]
付世豪,侯 冰,夏 阳,等.多岩性组合层状储层一体化压裂裂缝扩展试验研究[J]. 煤炭学报,2021,46(增1):377-384.(FU Shihao,HOU Bing,XIA Yang,et al. Experimental study on fracture propagation of integrated fracturing in multilithologic combination layered reservoir[J]. Journal of China Coal Society,2021,46(Supp.1):377-384.(in Chinese))
[18]
SHAN Q,JIN Y,TAN P,et al. Experimental and numerical investigations on the vertical propagation of hydraulic fractures in laminated shales[J]. Journal of Geophysics and Engineering,2018,15(4):1 729-1 742.
[19]
HE W,LIAN H,LIANG W,et al. Experimental study of supercritical CO2 fracturing across coal-rock interfaces[J]. Rock Mechanics and Rock Engineering,2023,56(1):57-68.
[20]
高 杰,侯 冰,谭 鹏,等. 砂煤互层水力裂缝穿层扩展机制[J].煤炭学报,2017,42(增2):428-433.(GAO Jie,HOU Bing,TAN Peng,et al. Cross-layer propagation mechanism of hydraulic fractures in sand-coal interbeds[J]. Journal of China Coal Society,2017,42(Supp.2):428-433.(in Chinese))
[21]
SONG Z,LIU L,HOU J,et al. Effect of polymer on gas flow behavior in microfractures of unconventional gas reservoirs[J]. Journal of Natural Gas Science and Engineering,2015,23:26-32.
[22]
李兆敏,吕其超,李松岩,等. 煤层低伤害N2泡沫压裂液研究[J].中国石油大学学报:自然科学版,2013,37(5):100-106.(LI Zhaomin,LV Qichao,LI Songyan,et al. Study on low damage N2 foam fracturing fluid in coal seam[J]. Journal of China University of Petroleum:Natural Science,2013,37(5):100-106.(in Chinese))
[23]
李文达,肖贺成,梁卫国,等. N2泡沫穿层压裂煤岩组合体试验研究[J]. 煤炭学报,2023,48(12):4 499-4 511.(LI Wenda,XIAO Hecheng,LIANG Weiguo,et al. Experimental study on N2 foam layer-through fracturing coal-rock combination[J]. Journal of China Coal Society,2023,48(12):4 499-4 511.(in Chinese))
[24]
ZHENG S,SHARMA M M. Modeling hydraulic fracturing using natural gas foam as fracturing fluids[J]. Energies,2021,14(22):7 645.
[25]
KHAN J A,PADMANABHAN E,HAQ I U,et al. Hydraulic fracturing with low and high viscous injection mediums to investigate net fracture pressure and fracture network in shale of different brittleness index[J]. Geomechanics for Energy and the Environment,2023,33:100416.
[26]
翟 成,郑仰峰,余 旭,等. 水力压裂模拟用煤岩体相似材料基础力学特性实验研究[J]. 煤田地质与勘探,2022,50(8):16-28.(ZHAI Cheng,ZHENG Yangfeng,YU Xu,et al. Experimental study on basic mechanical properties of coal and rock similar materials for hydraulic fracturing simulation[J]. Coal Geology and Exploration,2022,50(8):16-28.(in Chinese))
[27]
沙 飞,李术才,刘人太,等. 富水砂层高效注浆材料试验与应用研究[J]. 岩石力学与工程学报,2019,38(7):1 420-1 433.(SHA Fei,LI Shucai,LIU Rentai,et al. Experimental study and application of high-efficiency grouting materials for water-rich sand layer[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(7):1 420-1 433.(in Chinese))
[28]
GU M,MOHANTY K K. Effect of foam quality on effectiveness of hydraulic fracturing in shales[J]. International Journal of Rock Mechanics and Mining Sciences,2014,70:273-285.
[29]
姜玉龙,梁卫国,李治刚,等. 煤岩组合体跨界面压裂及声发射响应特征试验研究[J]. 岩石力学与工程学报,2019,38(5):875-887.(JIANG Yulong,LIANG Weiguo,LI Zhigang,et al. Experimental study on cross-interface fracturing and acoustic emission response characteristics of coal-rock combination[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(5):875-887.(in Chinese))
[30]
李全贵,邓羿泽,胡千庭,等. 煤岩水力压裂物理试验研究综述及展望[J]. 煤炭科学技术,2022,50(12):62-72.(LI Quangui,DENG Yize,HU Qianting,et al. Review and Prospect of Physical Test Research on Hydraulic Fracturing of Coal Rock[J]. Coal Science and Technology,2022,50(12):62-72.(in Chinese))
[31]
RANJITH P G,WANNIARACHCHI W A M,PERERA M S A,et al. Investigation of the effect of foam flow rate on foam-based hydraulic fracturing of shale reservoir rocks with natural fractures:An experimental study[J]. Journal of Petroleum Science and Engineering,2018,169:518-531.
[32]
刘江峰,倪宏阳,浦 海,等. 多孔介质气体渗透率测试理论、方法、装置及应用[J]. 岩石力学与工程学报,2021,40(1):137-146.(LIU Jiangfeng,NI Hongyang,PU Hai,et al. Theory,method,apparatus and application of gas permeability measurement in porous media[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):137-146.(in Chinese))
[33]
WANG J,XIE L,XIE H,et al. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests[J]. Journal of Natural Gas Science and Engineering,2016,36:1 120-1 129.
[34]
樊世星,文 虎,金永飞,等. 穿层钻孔液态CO2压裂煤层起裂压力模型探究和工程验证[J]. 岩石力学与工程学报,2021,40(4):703-712.(FAN Shixing,WEN Hu,JIN Yongfei,et al. Research and engineering verification of initiation pressure model of liquid CO2 fracturing coal seam in cross-layer drilling[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):703-712.(in Chinese))
[35]
YAN H,WANG W,ZHANG J,et al. Experimental study on the influence of coal-rock interface strength on crack propagation law of supercritical carbon dioxide fracturing[J]. Gas Science and Engineering,2023,112:204943.
[36]
樊世星. 液态CO2压裂煤岩增透及裂缝形成机制研究[J]. 岩石力学与工程学报,2021,40(8):1 728.(FAN Shixing. Study on the mechanism of permeability enhancement and fracture formation of coal and rock by liquid CO2 fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1 728.(in Chinese))
[37]
张 尧,李波波,许 江,等. 基于能量耗散的煤岩三轴受压损伤演化特征研究[J]. 岩石力学与工程学报,2021,40(8):1 614-1 627. (ZHANG Yao,LI Bobo,XU Jiang,et al. Study on damage evolution characteristics of coal rock under triaxial compression based on energy dissipation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1 614-1 627.(in Chinese))
[38]
侯 冰,谭 鹏,陈 勉,等. 致密灰岩储层压裂裂缝扩展形态试验研究[J]. 岩土工程学报,2016,38(2):219-225.(HOU Bing,TAN Peng,CHEN Mian,et al. Experimental study on fracture propagation morphology of fracturing in tight limestone reservoir[J]. Chinese Journal of Geotechnical Engineering,2016,38(2):219-225.(in Chinese))
[39]
范 濛,金 衍,付卫能,等. 水力裂缝扩展行为的声发射特征实验研究[J]. 岩石力学与工程学报,2018,37(增2):3 834-3 841.(FAN Meng,JIN Yan,FU Weineng,et al. Experimental study on acoustic emission characteristics of hydraulic fracture propagation behavior[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Supp.2):3 834-3 841.(in Chinese))
[40]
CEN D,HUANG D. Direct shear tests of sandstone under constant normal tensile stress condition using a simple auxiliary device[J]. Rock Mechanics and Rock Engineering,2017,50:1 425-1 438.
[41]
CHEN Y,LIANG W,LIAN H,et al. Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures[J]. International Journal of Rock Mechanics and Mining Sciences,2017,98:121-140.
[42]
徐常晫,张广清,彭 岩. 砂砾岩循环注液水力裂缝扩展规律研究[J]. 岩石力学与工程学报,2024,43(8):1 966-1 977.(XU Changzhuo,ZHANG Guangqing,PENG Yan. Study on the propagation law of hydraulic fractures in glutenite by cyclic liquid injection[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(8):1 966- 1 977. (in Chinese))