Development and application of a real-time high-temperature and high-stress true triaxial fracturing test system
GUO Wuhao1, 2, GUO Yintong1, 2, CHANG Xin1, 2, WU Mingyang1, 2, HE Yuting1, 2, BI Zhenhui1, 2, ZHANG Xinao1, 2, TENG Shilong1, 2, WANG Lei1, 2, YANG Chunhe1, 2
(1. State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: To investigate the initiation and propagation of fractures in deep oil, gas, and geothermal energy reservoir stimulation, an independently developed real-time high-temperature and high-stress true triaxial fracturing test system was created. This system bridges the gap between laboratory fracturing simulations and actual deep reservoir conditions. It is designed to simulate the fracturing and fracture propagation behavior of 300 mm cubic rock samples under in-situ deep reservoir conditions. The system monitors and processes parameters such as stress, displacement, pump pressure, flow rate, and acoustic emission signals during fracture propagation. The maximum stress in the X, Y, and Z directions can reach 88 MPa, and the internal temperature of the sample can be heated to 350 ℃. The intelligent temperature control mode ensures uniform heating of the entire sample, and the maximum pump pressure is 210 MPa when slickwater is used as the fracturing medium (120 MPa with supercritical CO2). The system has successfully conducted hydraulic fracturing tests of shale and supercritical CO2 fracturing tests of granite under high-temperature and high-stress conditions. The test results demonstrate high accuracy and good stability. Under high-stress conditions, post-peak fluctuations in the pump pressure curve are intensified. High temperatures reduce breakdown pressure and increase fracture complexity. When supercritical CO2 is used as the fracturing medium, the breakdown pressure of granite significantly decreases, the number and energy level of acoustic emission signals weaken, and fracture complexity increases. These findings provide theoretical and technical support for optimizing deep reservoir reconstruction technology.
邹才能,马 锋,潘松圻,等. 世界能源转型革命与绿色智慧能源体系内涵及路径[J]. 石油勘探与开发,2023,50(3):633-647.(ZOU Caineng,MA Feng,PAN Songqi,et al. Global energy transition revolution and the connotation and pathway of the green and intelligent energy system[J]. Petroleum Exploration and Development,2023,50(3):633-647.(in Chinese))
[2]
许天福,文冬光,袁益龙. 干热岩地热能开发技术挑战与发展战略[J]. 地球科学,2024,49(6):2 131-2 147.(XU Tianfu,WEN Dongguang,YUAN Yilong. Technical challenges and strategy of geothermal energy development from hot dry rock[J]. Earth Science,2024,49(6):2 131-2 147.(in Chinese))
[3]
赵金洲,任 岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121-142.(ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al. Ten years of gas shale fracturing in China:Review and prospect[J]. Natural Gas Industry,2021,41(8):121-142.(in Chinese))
[4]
马新仿,张士诚. 水力压裂技术的发展现状[J]. 河南石油,2002,16(1):44-47.(MA Xinfang,ZHANG Shicheng. Development status of hydraulic fracturing technology[J]. Henan Petroleum,2002,16(1):44-47.(in Chinese))
[5]
ALTAMMAR M J,GALA D,SHARMA M M,et al. Laboratory visualization of fracture initiation and propagation using compressible and incompressible fracturing fluids[J]. Journal of Natural Gas Science and Engineering,2018,55:542-560.
[6]
MORENO C,CHITRALA Y,SONDERGELD C,et al. Laboratory studies of hydraulic fractures in tight sands at different applied stresses[M]. Tulsa:Society of Exploration Geophysicists,2011:1 550-1 554.
[7]
GONçALVES DA SILVA B,EINSTEIN H. Physical processes involved in the laboratory hydraulic fracturing of granite:Visual observations and interpretation[J]. Engineering Fracture Mechanics,2018,191:125-142.
[8]
ZHAO Y,ZHANG Y,WANG C,et al. Hydraulic fracturing characteristics and evaluation of fracturing effectiveness under different anisotropic angles and injection rates:An experimental investigation in absence of confining pressure[J]. Journal of Natural Gas Science and Engineering,2022,97:104343.
[9]
FRASER-HARRIS A P,MCDERMOTT C I,COUPLES G D,et al. Experimental Investigation of Hydraulic Fracturing and Stress Sensitivity of Fracture Permeability Under Changing Polyaxial Stress Conditions[J]. Journal of Geophysical Research:Solid Earth,2020,125(12):e2020JB020044.
[10]
WANG S,ELSWORTH D,LIU J. Permeability evolution in fractured coal:The roles of fracture geometry and water-content[J]. International Journal of Coal Geology,2011,87(1):13-25.
[11]
KUMARI W G P,RANJITH P G,PERERA M S A,et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications:Geothermal energy from hot dry rocks[J]. Fuel,2018,230:138-154.
[12]
ZHANG Y,MA Y,HU Z,et al. An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite[J]. Renewable Energy,2019,140:615-624.
[13]
ZHAO Y,WAN Z,FENG Z,et al. Triaxial compression system for rock testing under high temperature and high pressure[J]. International Journal of Rock Mechanics and Mining Sciences,2012,52:132-138.
[14]
GUO P,LI X,LI S,et al. Quantitative analysis of anisotropy effect on hydrofracturing efficiency and process in shale using X-Ray computed tomography and acoustic emission[J]. Rock Mechanics and Rock Engineering,2021,54(11):5 715-5 730.
[15]
蒋长宝,杨毅毫,刘辉辉,等. 天然裂缝对水力压裂煤的起裂及扩展试验研究[J]. 煤炭科学技术,2024,52(5):92-101.(JIANG Changbao,YANG Yihao,LIU Huihui,et al. Study on influence of natural fractures on initiaition and propagation of hydraulic fracturing coal[J]. Coal Science and Technology,2024,52(5):92-101.(in Chinese))
[16]
侯 冰,崔 壮,曾 悦. 深层致密储层大斜度井压裂裂缝扩展机制研究[J]. 岩石力学与工程学报,2023,42(增2):4 054-4 063. (HOU Bin,CUI Zhuang,ZENG Yue. Experimental study on fracture propagation morphology of deviated well in tight reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Supp.2):4 054-4 063.(in Chinese))
[17]
GUO T,RUI Z,QU Z,et al. Experimental study of directional propagation of hydraulic fracture guided by multi-radial slim holes[J]. Journal of Petroleum Science and Engineering,2018,166:592-601.
[18]
郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报,2014,33(1):52-59.(GUO Yintong,YANG Chunhe,JIA Changgui,et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):52-59.(in Chinese))
[19]
YU J,LI N,HUI B,et al. Experimental simulation of fracture propagation and extension in hydraulic fracturing:A state-of-the-art review[J]. Fuel,2024,363:131021.
[20]
张军义,贾光亮. 影响鄂尔多斯盆地致密砂岩储层水力压裂效果关键因素分析[J]. 非常规油气,2024,11(3):114-119.(ZHANG Junyi,JlA Guangliang. Analysis of key factors affecting fracturing effect in tight sandstone reservoir[J]. Unconventional Oil and Gas,2024,11(3):114-119.(in Chinese))
[21]
何 骁,陈更生,吴建发,等. 四川盆地南部地区深层页岩气勘探开发新进展与挑战[J]. 天然气工业,2022,42(8):24-34.(HE Xiao,CHEN Gengsheng,WU Jianfa,et al. Deep shale gas exploration and development in the southern Sichuan Basin:new progress and challenges[J]. Natural Gas Industry,2022,42(8):24-34.(in Chinese))
[22]
陈 骞,王志良,申林方,等. 基于热力耦合的近场动力学方法高温岩石水力压裂数值模拟[J]. 岩土力学,2024,45(8):2 502- 2 514.(CHEN Qian,WANG Zhiliang,SHEN Linfang,et al. A numerical simulation of high-temperature rock hydraulic fracturing based on coupled thermo-mechanical peridynamics[J]. Rock and Soil Mechanics,2024,45(8):2 502-2 514.(in Chinese))
[23]
马 啸,马东东,胡大伟,等. 实时高温真三轴试验系统的研制与应用[J]. 岩石力学与工程学报,2019,38(8):1 605-1 614.(MA Xiao,MA Dongdong,HU Dawei,et al. A real-time high-temperature true triaxial test system and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(8):1 605-1 614.(in Chinese))
[24]
曾义金,周 俊,王海涛,等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报,2019,38(9):1 758-1 766. (ZENG Yijin,ZHOU Jun,WANG Haitao,et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(9):1 758-1 766.(in Chinese))
[25]
SARMADIVALEH M,JOODI B,NABIPOUR A,et al. Steps for conducting a valid hydraulic fracturing laboratory test[J]. The APPEA Journal,2013,53:347.
[26]
FAN Y,ZHU Z,ZHAO Y,et al. The effects of some parameters on perforation tip initiation pressures in hydraulic fracturing[J]. Journal of Petroleum Science and Engineering,2019,176:1 053-1 060.
[27]
HOSSAIN M M,RAHMAN M K,RAHMAN S S. Hydraulic fracture initiation and propagation:roles of wellbore trajectory,perforation and stress regimes[J]. Journal of Petroleum Science and Engineering,2000,27(3):129-149.
[28]
BRUDY M,ZOBACK M D. Drilling-induced tensile wall-fractures:implications for determination of in-situ stress orientation and magnitude[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(2):191-215.
[29]
刘钰洋,鞠 玮,熊 伟,等. 川南泸州区块五峰—龙马溪组现今地应力特征与页岩气开发[J]. 科学技术与工程,2024,24(8):3 200-3 206.(LIU Yuyang,JU Wei,XIONG Wei,et al. Characteristics of present-day in-situ stress in the Wufeng—Longmaxi Formation of Luzhou block,southern Sichuan Basin:implications for shale gas development[J]. Science Technology and Engineering,2024,24(8):3 200-3 206.(in Chinese))
[30]
GUO W,GUO Y,YANG C,et al. Experimental investigation on the effects of heating-cooling cycles on the physical and mechanical properties of shale[J]. Journal of Natural Gas Science and Engineering,2022,97:104 377.
[31]
杨少强,张庆伦,杨 栋,等. 实时高温作用下油页岩力学及破裂特性演变规律研究[J]. 岩石力学与工程学报,2024,43(11):2 700-2 711.(YANG Shaoqiang,ZHANG Qinglun,YANG Dong,et al. Research on the evolution law of mechanics and fracture characteristics of oil shale under real-time high temperature conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(11):2 700-2 711.(in Chinese))
[32]
邱 浩,王子振,王瑞和,等. 单轴压力下裂缝闭合压力及其影响因素实验研究[J]. 岩石力学与工程学报,2015,34(增2):3 915-3 921.(QIU Hao,WANG Zizhen,WANG Ruihe,et al. Experimental study of closure pressure of cracks and its influencing factors under uniaxial pressure[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Supp.2):3 915-3 921.(in Chinese))
[33]
JIANG T,ZHANG J,WU H. Experimental and numerical study on hydraulic fracture propagation in coalbed methane reservoir[J]. Journal of Natural Gas Science and Engineering,2016,35:455-467.
[34]
娄彦敏,刘娟红,周晓平,等. 温度对水的粘度和扩散系数影响的研究[J]. 西南师范大学学报:自然科学版,2009,34(6):34-39.(LOU Yanmin,LIU Juanhong,ZHOU Xiaoping,et al. The influence of temperature on the viscosity and diffusion coefficient of water[J]. Journal of Southwest China Normal University:Natural Science,2009,34(6):34-39.(in Chinese))
[35]
ZOU Y,GAO B,ZHANG S,et al. Multi-fracture nonuniform initiation and vertical propagation behavior in thin interbedded tight sandstone:An experimental study[J]. Journal of Petroleum Science and Engineering,2022,213:110417.
[36]
GUO T,ZHANG S,QU Z,et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel,2014,128:373-380.
[37]
卢义玉,廖 引,汤积仁,等. 页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J]. 煤炭学报,2018,43(1):175-180.(LU Yiyu,LIAO Yin,TANG Jiren,et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing[J]. Journal of China Coal Society,2018,43(1):175-180.(in Chinese))
[38]
王海柱,李根生,贺振国,等. 超临界CO2岩石致裂机制分析 [J]. 岩土力学,2018,39(10):3 589-3 596.(WANG Haizhu,LI Gensheng,HE Zhenguo,et al. Analysis of mechanisms of supercritical CO2 fracturing[J]. Rock and Soil Mechanics,2018,39(10):3 589-3 596. (in Chinese))
[39]
REHBINDER P A,SHCHUKIN E D. Surface phenomena in solids during deformation and fracture processes[J]. Progress in Surface Science,1972,3:97-188.
[40]
ZHOU D,ZHANG G,ZHAO P,et al. Effects of post-instability induced by supercritical CO2 phase change on fracture dynamic propagation[J]. Journal of Petroleum Science and Engineering,2018,162:358-366.