2025年7月28日 星期一
岩石力学与工程学报  2025, Vol. 44 Issue (6): 1514-1526    DOI: 10.3724/1000-6915.jrme.2024.0823
  学术论文 本期目录 | 过刊浏览 | 高级检索 |
复杂断裂下多簇水力裂缝非均匀扩展的物理模拟实验
谭  鹏1,2,3,邢岳堃2,韩泰森2,陈金龙2,徐  杭2,陈朝伟1,3
(1. 中国石油集团工程技术研究院有限公司,北京  102206;2. 中国矿业大学 煤炭精细勘探与智能开发全国重点实验室,
江苏 徐州  221116;3. 油气钻完井技术国家工程研究中心,北京  102206)
Physical simulation experiments on non-uniform extension of multi-cluster hydraulic fractures under complex fracturing conditions
TAN Peng1, 2, 3, XING Yuekun2, HAN Taisen2, CHEN Jinlong2, XU Hang2, CHEN Zhaowei1, 3
(1. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China; 2. State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China;
3. National Engineering Research Center for Oil and Gas Drilling and Completion Technology, Beijing 102206, China)
全文: PDF (4382 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对含天然断裂带页岩气储层段内多簇压裂裂缝难均衡扩展的难题,开展了含复杂断裂带的多簇压裂物理模拟实验,制样及泵注过程中,兼顾多簇裂缝按扩展优先级分配进液,且能独立监测各簇流量,同时在试样内预制天然断裂带,依据裂缝扩展特性、地应力与几何的工程–实验相似性,得到了实验与工程参数的相似对应关系,实验研究相似于工程的每簇0.825与3.3 m3/min排量、6与12 m簇间距以及天然裂缝体空间排布位置(中间及两侧簇)对多压裂裂缝扩展的影响,主要发现如下:(1)低排量与大簇间距提升了含/不含天然断裂带试样多簇压裂裂缝均衡扩展能力,天然断裂带邻近簇裂缝优先扩展进而抑制了多缝扩展的均匀性;(2)高排量与小簇距利于单簇分支缝形成,并促使各簇裂缝相连,小排量与大簇距使多簇裂缝形态单一且互不干扰,起裂簇临近断裂带条件下,压裂缝形态呈现为压裂裂缝连通天然裂缝体;(3)多缝扩展演化呈现为各簇裂缝依次进液、多条压裂缝交替扩展且难同步,断裂带所在簇会优先进液并沟通天然弱面,泵注压力曲线在达到破裂压力前出现波动;(4)基于裂缝失稳及应力阴影理论,讨论了高排量提升裂缝扩展驱动力而天然裂缝带降低裂缝扩展阻力的单簇裂缝失稳优势扩展机制(抑制均衡扩展),以及高排量与小簇距增强缝间干扰的多缝复杂度提升机制,并提出了近井筒端多缝均衡扩展且远处形成缝网的压裂设计优化建议。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭 鹏1
2
3
邢岳堃2
韩泰森2
陈金龙2
徐 杭2
陈朝伟1
3
关键词 岩石力学页岩气多簇压裂复杂断裂均衡扩展压裂物模    
Abstract

Achieving uniform propagation of multi-cluster hydraulic fractures within shale gas reservoirs containing natural fracture zones remains challenging. This study developed a physical simulation methodology to model multi-cluster fracturing in specimens containing prefabricated natural fracture zones. The experimental setup for sample preparation and pumping allows for the distribution of liquid into multiple cluster fractures according to a predetermined sequence of extension, with independent monitoring of flow rates for each cluster. Leveraging the engineering-experimental similarity in fracture propagation characteristics, in-situ stress, and geometry, analogous relationships were derived between experimental and engineering parameters. The effects of pumping rates (0.825 and 3.3 m³/min per cluster), cluster spacing (6 and 12 m), and spatial arrangement positions (middle and side clusters) of natural fracture zones on the propagation of multi-cluster hydraulic fractures in field applications were experimentally investigated. The results showed that: (1) Low pumping rates combined with large cluster spacing enhance the uniform propagation of multi-cluster hydraulic fractures in both samples with and without natural fracture zones. Fractures adjacent to natural fracture zones tend to propagate preferentially, thereby inhibiting uniform multi-fracture propagation. (2) High pumping rates and small cluster spacing facilitate the formation of single-cluster branch fractures and promote inter-cluster fracture connectivity. Conversely, low pumping rates and large cluster spacing result in simpler, non-interfering multi-cluster fracture morphologies. When the initiation cluster is adjacent to a natural fracture zone, the morphology of hydraulic fractures exhibits connectivity between hydraulic fractures and natural fracture zones. (3) During multi-fracture propagation, each cluster of fractures sequentially receives fluid inflow, indicating that multiple hydraulic fractures extend in an alternating sequence rather than simultaneously. Clusters situated within fracture zones tend to receive fluid inflow preferentially and connect with natural fracture zones. Consequently, the pump pressure curve exhibits fluctuations prior to reaching the break pressure. (4) Based on the theories of fracture instability extension and stress shadow, this study discusses the mechanisms of single-cluster fracture instability propagation and multi-fracture complexity enhancement. A high pumping rate increases the driving force for fracture propagation, while natural fracture zones decrease fracture resistance, thereby promoting single-cluster fracture instability. Namely, these factors inhibit the uniform extension of multi-cluster hydraulic fractures. Furthermore, a combination of high pumping rates and small cluster spacing intensifies interference between fractures, leading to the generation of complex fractures. Finally, optimization suggestions for the fracturing design were proposed, focusing on achieving uniform propagation of multiple hydraulic fractures near the wellbore while promoting the formation of complex hydraulic fractures in more distant regions.

Key wordsrock mechanics    shale gas    multi-cluster fracturing    complex fracturing    uniform extension    fracturing physical simulation
    
引用本文:   
谭 鹏1,2,3,邢岳堃2,韩泰森2,陈金龙2,徐 杭2,陈朝伟1,3. 复杂断裂下多簇水力裂缝非均匀扩展的物理模拟实验[J]. 岩石力学与工程学报, 2025, 44(6): 1514-1526.
TAN Peng1, 2, 3, XING Yuekun2, HAN Taisen2, CHEN Jinlong2, XU Hang2, CHEN Zhaowei1, 3. Physical simulation experiments on non-uniform extension of multi-cluster hydraulic fractures under complex fracturing conditions. , 2025, 44(6): 1514-1526.
链接本文:  
https://rockmech.whrsm.ac.cn/CN/10.3724/1000-6915.jrme.2024.0823      或      https://rockmech.whrsm.ac.cn/CN/Y2025/V44/I6/1514
版权所有 © 2005-2016 《岩石力学与工程学报》编辑部
   主办单位:中国岩石力学与工程学会 出版单位:科学出版社
地址:湖北省武汉市武昌小洪山(邮编:430071) 电话:(027)87199250 传真:(027)87199250 E-mail: rock@whrsm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:010-82358270,E-mail: support@magtech.com.cn
鄂公网安备 42010602003581号