(1. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. Shandong Key Laboratory of Intelligent Prevention and Control of Dynamic Disaster in Deep Mines, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering
Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China)
Abstract: During the dynamic failure of coal and rock, a significant number of fragments are ejected, and the ejection distance and kinetic energy of these fragments can more intuitively reflect the intensity of the specimen?s failure. This paper proposes a method for measuring the ejection kinetic energy of coal and rock fragments, with its feasibility verified through numerical simulation examples. Experimental research is conducted on the ejection characteristics of fragments from different types of rocks. Based on these findings, a classification method for burst liability is proposed, utilizing the burst kinetic energy index. Furthermore, the influence of loading stiffness on the ejection characteristics of fragments and the burst kinetic energy index of coal is analyzed. The results indicate that the ejection characteristics of coal and rock specimens vary significantly among different lithologies. The ejection mass proportion and distance of fragments from granite and basalt are notably greater than those from sandstone, marble, and coal, which exhibit lower strength. The stronger the burst liability of the specimen, the greater the ejection distance and kinetic energy of the fragments. The ejection kinetic energy of the fragments shows a positive power function relationship with uniaxial compressive strength, and a positive linear relationship with both the burst energy index and the residual elastic energy index. The recommended ranges for the burst kinetic energy index are as follows: for coal with no burst liability, less than 30 J/m3; for weak burst liability, 30 to 300 J/m3; and for strong burst liability, greater than 300 J/m3. As the stiffness ratio of the testing machine to the specimen decreases, the energy supplied by the testing machine to the coal specimen increases, resulting in an increase in both the ejection distance and kinetic energy of the fragments after failure. The burst kinetic energy index exhibits a positive power function relationship with the stiffness ratio. The proposed method for measuring the ejection kinetic energy of specimen fragments and the burst kinetic energy index can effectively evaluate the burst liability and damage intensity of coal specimens.
赵同彬1,2,郭 磊1,2,尹延春1,2,肖亚勋3,李世航1,2,高子童1,2. 不同种类煤岩碎块弹射特征及冲击动能指数测试[J]. 岩石力学与工程学报, 2025, 44(7): 1709-1719.
ZHAO Tongbin1, 2, GUO Lei1, 2, YIN Yanchun1, 2, XIAO Yaxun3, LI Shihang1, 2, GAO Zitong1, 2. Testing of fragments ejection characteristics and burst kinetic energy index for different types of coal and rock. , 2025, 44(7): 1709-1719.
潘一山,宋义敏,刘 军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报,2023,42(9):2 081-2 095.(PAN Yishan,SONG Yimin,LIU Jun. Pattern,change and new situation of coal mine rockburst prevention and control in China[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2 081-2 095.(in Chinese))
[2]
王国法,潘一山,赵善坤,等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术,2024,52(1):1-14.(WANG Guofa,PAN Yishan,ZHAO Shankun,et al. How to realize safe-efficient-intelligent mining of rock burst coal seam[J]. Coal Science and Technology,2024,52(1):1-14.(in Chinese))
[3]
赵同彬,尹延春,谭云亮,等. 变刚度加载试验系统的研制及其在煤岩破坏力学行为测试中的应用[J]. 岩石力学与工程学报,2022,41(9):1 846-1 857.(ZHAO Tongbin,YIN Yanchun,TAN Yunliang,et al. Development of a rock testing system with changeable stiffness and its application in the study on the rock failure mechanical behavior[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1 846-1 857.(in Chinese))
[4]
许慧聪,来兴平,单鹏飞,等. 深部煤岩动力灾害多场耦合试验系统研制及应用[J]. 岩石力学与工程学报,2025,44(4):926-939.(XU Huicong,LAI Xingping,SHAN Pengfei,et al. Development and application of multi-field coupling test system for deep coal-rock dynamic disaster[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(4):926-939.(in Chinese))
[5]
齐庆新,李海涛,李晓鹏. 煤矿冲击危险性的定性与定量评价研究[J]. 煤炭科学技术,2021,49(4):12-19.(QI Qingxin,LI Haitao,LI Xiaopeng. Qualitative and quantitative evaluation of impact risk in underground mine[J]. Coal Science and Technology,2021,49(4):12-19.(in Chinese))
[6]
谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,2024,49(1):367-379.(TAN Yunliang,ZHANG Xiufeng,XIAO Ziyi,et al. Main control factors of rock burst and its disaster evolution mechanism[J]. Journal of China Coal Society,2024,49(1):367-379.(in Chinese))
[7]
中华人民共和国国家标准编写组. GB/T 25217.2—2010 冲击地压测定、监测与防治方法 第2部分:煤的冲击倾向性分类及指数的测定方法[S]. 北京:中国标准出版社,2010.(The National Standards Compilation Group of People?s Republic of China. GB/T 25217.2—2010 Methods for test,monitoring and prevention of rock burst—Part 2:Classification and laboratory test method on bursting liability of coal[S]. Beijing:Standards Press of China,2010.(in Chinese))
[8]
中华人民共和国国家标准编写组. GB/T 25217.3—2019 冲击地压测定、监测与防治方法 第3部分:煤岩组合试件冲击倾向性分类及指数的测定方法[S]. 北京:中国标准出版社,2019.(The National Standards Compilation Group of People?s Republic of China. GB/T 25217.3-2019 Methods for test,monitoring and prevention of rock burst—Part3:Classification and laboratory test method on bursting liability of coal-rock combinations sample[S]. Beijing:Standards Press of China,2019.(in Chinese))
[9]
潘一山,耿 琳,李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报,2010,35(12):1 975-1 978.(PAN Yishan,GENG Lin,LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society,2010,35(12):1 975-1 978.(in Chinese))
[10]
代树红,王晓晨,潘一山,等. 模量指数评价煤的冲击倾向性的实验研究[J]. 煤炭学报,2019,44(6):1 726-1 731.(DAI Shuhong,WANG Xiaochen,PAN Yishan,et al. Experimental study on the evaluation of coal burst tendency utilizing modulus index[J]. Journal of China Coal Society,2019,44(6):1 726-1 731.(in Chinese))
[11]
TAN Y L,LIU X S,SHEN B T,et al. New approaches to testing and evaluating the impact capability of coal seam with hard roof and/or floor in coal mines[J]. Geomechanics and Engineering,2018,14(4):367-376.
[12]
谭云亮,郭伟耀,辛恒奇,等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报,2019,44(1):160-172.(TAN Yunliang,GUO Weiyao,XIN Hengqi,et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society,2019,44(1):160-172.(in Chinese))
[13]
张绪言,冯国瑞,康立勋,等. 用剩余能量释放速度判定煤岩冲击倾向性[J]. 煤炭学报,2009,34(9):1 165-1 168.(ZHANG Xuyan,FENG Guorui,KANG Lixun,et al. Method to determine burst tendency of coal rock by residual energy emission speed[J]. Journal of China Coal Society,2009,34(9):1 165-1 168.(in Chinese))
[14]
GONG F Q,WANG Y L,WANG Z G,et al. A new criterion of coal burst proneness based on the residual elastic energy index[J]. International Journal of Mining Science and Technology,2021,31(4):553-563.
[15]
宫凤强,赵英杰,王云亮,等. 煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机制[J]. 煤炭学报,2022,47(5):1 974-2 010.(GONG Fengqiang,ZHAO Yingjie,WANG Yunliang,et al. Research progress of coal bursting liability indices and coal burst “Human-Coal- Environment” three elements mechanism[J]. Journal of China Coal Society,2022,47(5):1 974-2 010.(in Chinese))
[16]
卢志国,鞠文君,高富强,等. 基于非线性储能与释放特征的煤冲击倾向性指标[J]. 岩石力学与工程学报,2021,40(8):1 559-1 569. (LU Zhiguo,JU Wenjun,GAO Fuqiang,et al. Bursting liability index of coal based on nonlinear storage and release characteristics of elastic energy[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(8):1 559-1 569.(in Chinese))
[17]
赵毅鑫,谢镕澴,高艺瑞. 煤冲击倾向性的针贯入法测定[J]. 煤炭学报,2023,48(5):1 932-1 942.(ZHAO Yixin,XIE Ronghuan,GAO Yirui. Coal bursting tendency evaluation by needle penetration test[J]. Journal of China Coal Society,2023,48(5):1 932-1 942.(in Chinese))
[18]
赵毅鑫,杨 哲,谢镕澴,等. 基于便携式里氏硬度计的煤冲击倾向性分级判别准则研究[J]. 煤炭学报,2025,50(1):297-310.(ZHAO Yixin,YANG Zhe,XIE Ronghuan,et al. Study on the classification criteria for coal bursting liability based on portable Leeb hardness testing[J]. Journal of China Coal Society,2025,50(1):297-310.(in Chinese))
[19]
尹延春,赵同彬,李海涛,等. 不同加载刚度下煤体冲击倾向性测试及评价指数分析[J]. 岩石力学与工程学报,2023,42(12):2 982-2 992.(YIN Yanchun,ZHAO Tongbin,LI Haitao,et al. Bursting liability test and evaluation index analysis of coal under different loading stiffness[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(12):2 982-2 992.(in Chinese))
[20]
苏国韶,蒋剑青,冯夏庭,等. 岩爆弹射破坏过程的试验研究[J]. 岩石力学与工程学报,2016,35(10):1 990-1 999.(SU Guoshao,JIANG Jianqing,FENG Xiating,et al. Experimental study of ejection process in rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(10):1 990-1 999.(in Chinese))
[21]
卢志国,高富强,鞠文君,等. 低刚度加载诱发煤样冲击破坏特征及其机制[J]. 岩石力学与工程学报,2024,43(6):1 455-1 467.(LU Zhiguo,GAO Fuqiang,JU Wenjun,et al. Characteristics and mechanism of coal sample impact failure induced by low stiffness loading[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(6):1 455-1 467.(in Chinese))
[22]
冯龙飞,王双明,王晓东,等. 煤单轴峰后动态冲击破坏特征及差异机制模拟研究[J]. 煤炭学报,2024,49(增2):714-730.(FENG Longfei,WANG Shuangming,WANG Xiaodong,et al. Numerical simulation on difference mechanism and post-peak dynamic failure characteristics of coal under uniaxial compression[J]. Journal of China Coal Society,2024,49(Supp.2):714-730.(in Chinese))
[23]
XIONG Y R,FENG X T,YAO Z B,et al. Study on the development mechanism of time-delayed strain rockbursts in deep granite tunnels excavated by TBM[J]. Rock Mechanics and Rock Engineering,2025,58:405-430.
[24]
SHI L,LI C C,ZHANG X W,et al. Experimental verification of the intrinsic strainburst proneness of various rock types[J]. Bulletin of Engineering Geology and the Environmental,2023,82:119.
[25]
SHI L,LI C C,ZHANG X W. Laboratory tests of strain burst in boreholes of four types of rocks under biaxial loading[J]. Rock Mechanics and Rock Engineering,2025:58:301-319.
[26]
LI C C,ZHAO T B,ZHANG Y B,et al. A study on the energy sources and the role of the surrounding rock mass in strain burst[J]. International Journal of Rock Mechanics and Mining Sciences,2022,154:105114.
[27]
高富强,原贵阳,娄金福,等. 基于局部矿井刚度理论的冲击地压试验装置研制及应用[J]. 煤炭学报,2023,48(5):1 985-1 995. (GAO Fuqiang,YUAN Guiyang,LOU Jinfu,et al. Development and application of coal burst experiment system based on local mine stiffness theory[J]. Journal of China Coal Society,2023,48(5):1 985-1 995.(in Chinese))
[28]
XIAO Y X,WAN R J,FENG X T,et al. Stiffness theory of rockburst:research progress and trends[J]. Journal of Central South University,2023,30:4 230-4 251.
[29]
YIN Y C,ZHENG W W,TANG X X,et al. Test study on failure and energy supply characteristics of rock under different loading stiffness[J]. Engineering Failure Analysis,2022,142:106796.
[30]
孙晓明,任 超,刘冬桥,等. 基于岩爆碎屑研究的高楼山隧道岩爆机制分析与类型判定[J]. 工程科学学报,2023,45(3):337-348.(SUN Xiaoming,REN Chao,LIU Dongqiao,et al. Mechanism analysis and type determination of the rockburst of the Gaoloushan tunnel based on a study of rockburst fragments[J]. Chinese Journal of Engineering,2023,45(3):337-348.(in Chinese))
[31]
李杨杨,张士川,文志杰,等. 循环荷载下煤样能量转化与碎块分布特征[J]. 煤炭学报,2019,44(5):1 411-1 420.(LI Yangyang,ZHANG Shichuan,WEN Zhijie,et al. Energy conversion and fragment distribution characteristics of coal sample under uniaxial cyclic loading[J]. Journal of China Coal Society,2019,44(5):1 411-1 420.(in Chinese))