[1] |
唐 亮,满孝峰,丛晟亦,等. 液化场地桩基地震失效机制:现状与挑战[J]. 岩土力学,2023,44(10):2 979-2 996.(TANG Liang,MAN Xiaofeng,CONG Shengyi,et al. Failure mechanism of pile foundations in liquefiable soils under seismic loading:status and challenge[J]. Rock and Soil Mechanics,2023,44(10):2 979-2 996.(in Chinese))
|
[2] |
RAJIB S,SEKGAR C D,SUMANTA H,et al. Effect of soil-pile raft-structure interaction on elastic and inelastic seismic behaviour[J]. Structures,2020,26:378-395.
|
[3] |
刘惠珊. 桩基震害及原因分析——日本阪神大地震的启示[J]. 工程抗震,1999,22(1):37-43.(LIU Huishan. Seismic damage of pile foundation and its cause analysis-Inspiration from the Kobe earthquake in Japan[J]. Earthquake Resistant Engineering,1999,22(1):37-43.(in Chinese))
|
[4] |
陈龙伟,刘昊儒,任叶飞,等. 2023年2月6日土耳其双强震场地液化及其震害特征现场调查分析[J]. 岩土工程学报,2024,46(7):1 541-1 548.(CHEN Longwei,LIU Haoru,REN Yefei,et al. In-situ investigation of site liquefaction and liquefaction-induced damages triggered by two strong Türkiye earthquakes on Feb. 6th,2023[J]. Chinese Journal of Geotechnical Engineering,2024,46(7):1 541-1 548.(in Chinese))
|
[5] |
WEI W,ERICH B. A simple hypoplastic constitutive model for sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1994,18(12):833-862.
|
[6] |
ELGAMAL A,YANG Z H,PARRA E. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering,2002,22(4):259-271.
|
[7] |
YANG Z H,ELGAMAL A,PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1 119-1 127.
|
[8] |
SUBHAMOY B,MADABHUSHI G S,MALCOLM B. An alternative mechanism of pile failure in liquefiable deposits during earthquakes[J]. Geotechnique,2004,54(3):203-213.
|
[9] |
ROUHOLAMIN M,LOMBARDI D,BHATTACHARYA S. Experimental investigation of transient bending moment of piles during seismic liquefaction.[J]. Soil Dynamics and Earthquake Engineering,2022,157:107251.
|
[10] |
HAYASHI K,TAKAHASHI S,SAITO T. Dynamic response of the saturated soil-reinforced concrete pile superstructure interaction under repeated shaking[J]. Soil Dynamics and Earthquake Engineering,2021,145:106685.
|
[11] |
LIU X,WANG R,ZHANG J M. Centrifuge shaking table tests on 4×4 pile groups in liquefiable ground[J]. Acta Geotechnica,2018,13: 1 405-1 418.
|
[12] |
ZHANG J,LI Y R,RONG X,et al. Dynamic p-y curves for vertical and batter pile groups in liquefied sand[J]. Earth quake Engineering and Engineering Vibration,2022,21(3):605-616.
|
[13] |
李雨润,刘 毅,梁旭华. 液化场地-群桩-上部结构动力特性研究综述[J]. 河北工业大学学报,2024,53(1):74-80.(LI Yurun,LIU Yi,LIANG Xuhua. Review on dynamic characteristics of liquefied site pile group-superstructure[J]. Journal of Hebei University of Technology,2024,53(1):74-80.(in Chinese))
|
[14] |
DASH S R,BHATTACHARYA S. Experimental py curves for liquefied soils from centrifuge tests[J]. Earthquake Engineering and Engineering Vibration,2021,20:863-876.
|
[15] |
闫志晓,李雨润,王东升,等. 覆水砂土场地中桥梁群桩基础地震响应离心试验研究[J]. 岩土力学,2023,44(3):861-872.(YAN Zhixiao,LI Yurun,WANG Dongsheng,et al. Centrifugal experimental study on seismic response of bridge pile group foundation in overlaying water sandy field[J]. Rock and Soil Mechanics,2023,44(3):861-872.(in Chinese))
|
[16] |
许成顺,豆鹏飞,杜修力,等. 液化场地-群桩基础-结构体系动力响应分析-大型振动台模型试验研究[J]. 岩土工程学报,2019,41(12):2 173-2 181.(XU Chengshun,DOU Pengfei,DU Xiuli,et al. Liquefaction site-group pile foundation-structural system dynamic response analysis-large-scale shaking table model test research[J]. Chinese Journal of Geotechnical Engineering,2019,41(12):2 173-2 181.(in Chinese))
|
[17] |
庄海洋,赵 畅,于 旭,等. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究[J]. 岩土工程学报,2022,44(6):979-987.(ZHUANG Haiyang,ZHAO Chang,YU Xu,et al. Earthquake responses of piles-soil dynamic interaction system for base-isolated structure system based on shaking table tests[J]. Chinese Journal of Geotechnical Engineering,2022,44(6):979-987.(in Chinese))
|
[18] |
戴启权,钱德玲,张泽涵,等. 液化场地超高层建筑群桩基础动力响应试验研究[J]. 岩石力学与工程学报,2015,34(12):2 572-2 579. (DAI Qiquan,QIAN Deling,ZHANG Zehan. Experimental research on dynamic response of pile group[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(12):2 572-2 579.(in Chinese))
|
[19] |
汪 刚,景立平,李嘉瑞,等. 桩-土-上部结构动力相互作用振动台试验研究[J]. 岩石力学与工程学报,2021,40(增2):3 414-3 424. (WANG Gang,JING Liping,LI Jiarui,et al. Shaking table test study on seismic soil pile superstructure interaction[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Supp.2):3 414-3 424. (in Chinese))
|
[20] |
HUSSEIN A F,El N M H. Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils[J]. Soil Dynamics and Earthquake Engineering,2021,149:106853.
|
[21] |
VISUVASAM J,CHANDRASEKARAN S. Effect of soil-pile-structure interaction on seismic behaviour of RC building frames[J]. Innovative Infrastructure Solutions,2019,4(1):45.
|
[22] |
王永志,王体强,王 海,等. 我国土工离心机进展与研发关键技术[J]. 地震研究,2020,43(3):592-600.(WANG Yongzhi,WANG Tiqiang,WANG Hai,et al. China?s geotechnical centrifuge progress and research and development of key technologies[J]. Journal of Seismological Research,2020,43(3):592-600.(in Chinese))
|
[23] |
王体强,王永志,张雪东,等. 超重力振动台柔性叠层箱剪切效能评价方法[J]. 岩土力学,2022,43(3):719-728.(WANG Tiqiang,WANG Yongzhi,ZHANG Xuedong,et al,Shear performance evaluation of a flexible laminar container with hypergravity shaking table tests[J]. Rock and Soil Mechanics,2022,43(3):719-728.(in Chinese))
|
[24] |
中华人民共和国行业标准编写组. JGJ94—2008 建筑桩基技术规范[S]. 北京:中国建筑工业出版社,2008.(The Professional Standards Compilation Group of People?s Republic of China. JGJ94—2008 Technical code for building pile foundation[S]. Beijing:China Architecture and Building Press,2008.(in Chinese))
|
[25] |
中华人民共和国国家标准编写组. GB55002—2021 建筑与市政工程抗震通用规范[S]. 北京:中国建筑工业出版社,2021.(The National Standards Compilation Group of People?s Republic of China. GB55002—2021 General code for seismic design of buildings and municipal engineering[S]. Beijing:China Architecture and Building Press,2021.(in Chinese))
|
[26] |
中华人民共和国国家标准编写组. GB50011—2010(2016年版) 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2016.(The National Standards Compilation Group of People?s Republic of China. GB 50011—2010(2016). Code for seismic design of buildings[S]. Beijing:China Architecture and Building Press,2016.(in Chinese))
|
[27] |
汤兆光. 超重力试验动态孔压传感器设计方法、性能评价与应用[博士学位论文][D]. 哈尔滨:中国地震局工程力学研究所,2022. (TANG Zhaoguang. Design method and performance evaluation of dynamic miniature pore water pressure transducer in centrifuge modelling and its application[Ph. D. Thesis][D]. Harbin:Institute of Engineering Mechanics China Earthquake Administration,2022.(in Chinese))
|
[28] |
中华人民共和国行业标准编写组. JGJ 125—2016 危险房屋鉴定标准[S]. 北京:中国建筑工业出版社,2016.(The Professional Standards Compilation Group of People?s Republic of China. JGJ 125—2016 Standard for dangerous building appraisal[S]. Beijing:China Architecture and Building Press,2016.(in Chinese))
|
[29] |
孟上九,刘汉龙,袁晓铭,等. 可液化地基上建筑物不均匀震陷机制的振动台试验研究[J]. 岩石力学与工程学报,2005,24(11):1 978-1 985. (MENG Shangjiu,LIU Hanlong,YUAN Xiaoming,et al. Shaking table experimental study on the mechanism of inhomogeneous subsidence of buildings on liquefiable foundations[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(11):1 978-1 985.(in Chinese))
|
[30] |
徐 进,陈卓识,孙 锐. 液化土层上建筑物不均匀震陷的数值研究[J]. 地震工程与工程振动,2017,37(4):158-164.(XU Jin,CHEN Zhuoshi,SUN Rui. Numerical study on earthquake-induced uneven settlement of liquefiable soil layers[J]. Earthquake Engineering and Engineering Dynamics,2017,37(4):158-164.(in Chinese))
|