[1] |
钟国强,王 浩,李 莉,等. 基于SFLA-GRNN模型的基坑地表最大沉降预测[J]. 岩土力学,2019,40(2):792-798.(ZHONG Guoqiang,WANG Hao,LI Li,et al. Prediction of maximum settlement of foundation pit based on SFLA-GRNN model[J]. Rock and Soil Mechanics,2019,40(2):792-798.(in Chinese))
|
[2] |
张 斌,顾功开,李 超. 基于动平均改进灰色模型的高边坡沉降变形预测[J]. 人民长江,2010,41(20):56-59.(ZHANG Bin,GU Gongkai,LI Chao. Forecast for settlement of high slope based on improved dynamic average grey model[J]. Yangtze River,2010,41(20):56-59.(in Chinese))
|
[3] |
伍毅敏,刘延安,王 恒,等. 北京市隧道下穿施工引起城市路面沉降的影响规律回归分析[J]. 交通运输工程学报,2022,22(2):176-186.(WU Yimin,LIU Yan?an,WANG Heng,et al. Regression analysis of influence law of urban pavement settlement caused by underpass tunnel construction in Beijing[J]. Journal of Traffic and Transportation Engineering,2022,22(2):176-186.(in Chinese))
|
[4] |
HUANG C F,LI Q,WU S C,et al. Application of the Richards model for settlement prediction based on a bidirectional difference-weighted least-squares method[J]. Arabian Journal for Science and Engineering,2018,43(10):5 057-5 065.
|
[5] |
YANG C W,JIANG Z Z. A discrete-time model-based method for predicting settlement of geotechnical foundations in buildings[J]. Mobile Information Systems,2022:5631634.
|
[6] |
景宏君,苏如荣,苏 霆. 高路堤沉降变形预测模型研究[J]. 岩土力学,2007,139(8):1 762-1 766.(JING Hongjun,SU Rurong,SU Ting. Study of settlement deformation prediction model of high embankment[J]. Rock and Soil Mechanics,2007,139(8):1 762- 1 766.(in Chinese))
|
[7] |
CUI Z D,REN S X. Prediction of long-term settlements of subway tunnel in the soft soil area[J]. Natural Hazards,2014,74(2):1 007- 1 020.
|
[8] |
张文胜,崔志伟. 铁路客运专线特大桥沉降预测模型[J]. 交通运输工程学报,2011,11(6):31-36.(ZHANG Wensheng,CUI Zhiwei. Settlement prediction model of super large bridge for passenger dedicated railway[J]. Journal of Traffic and Transportation Engineering,2011,11(6):31-36.(in Chinese))
|
[9] |
黄亚东,张土乔,俞亭超,等. 公路软基沉降预测的支持向量机模型[J]. 岩土力学,2005,26(12):1 987-1 990.(HUANG Yadong,ZHANG Tuqiao,YU Tingchao,et al. Support vector machine model of settlement prediction of road soft foundation[J]. Rock and Soil Mechanics,2005,26(12):1 987-1 990.(in Chinese))
|
[10] |
QIAO S F,TAN J K,ZHANG Y G,et al. Settlement prediction of foundation pit excavation based on the GWO-ELM model considering different states of influence[J]. Advances in Civil Engineering,2021,Article number:8896210.
|
[11] |
DENG J H,ZENG T,YUAN S,et al. Interval prediction of building foundation settlement using kernel extreme learning machine[J]. Frontiers in Earth Science,2022,10:8896210.
|
[12] |
ZHANG C,LI J Z,HE Y. Application of optimized grey discrete Verhulst-BP neural network model in settlement prediction of
|
|
foundation pit[J]. Environmental Earth Sciences,2019,78(15): 441.
|
[13] |
ZHANG Z Y,XU R Q,WU X,et al. ANN-based dynamic prediction of daily ground settlement of foundation pit considering time- dependent influence factors[J]. Applied Sciences-Basel,2022,12(13):6 324.
|
[14] |
文 明,张顶立,房 倩,等. 地铁车站施工过程中地表沉降的NARXNN时间序列预测模型[J]. 岩石力学与工程学报,2015,34(增1):3 306-3 312.(WEN Ming,ZHANG Dingli,FANG Qian,et al. The NARXNN time series prediction model for ground subsidence caused by construction of metro station[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Supp.1):3 306- 3 312.(in Chinese))
|
[15] |
高 燕,吴晓东,田嘉逸. 基于机器学习的地下溶洞空间形态对地面沉降影响的分析与预测[J]. 中山大学学报:自然科学版(中英文),2023,62(2):83-92.(GAO Yan,WU Xiaodong,TIAN Jiayi. Analysis and prediction of the ground subsidence due to the spatial form of underground karst caves based on machine learning[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(2): 83-92.(in Chinese))
|
[16] |
周 中,张俊杰,丁昊晖,等. 基于GA-Bi-LSTM的盾构隧道下穿既有隧道沉降预测模型[J]. 岩石力学与工程学报,2023,42(1):224-234.(ZHOU Zhong,ZHANG Junjie,DING Haohui,et al. Settlement prediction model of shield tunnel under-crossing existing tunnel based on GA-Bi-LSTM[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):224-234.(in Chinese))
|
[17] |
武 焱,张映雪. 基于门控深度循环信念网络的边坡沉降预测[J]. 交通科学与工程,2023,39(1):26-34.(WU Yan,ZHANG Yingxue. Slope settlement prediction based on gated deep recurrent belief network[J]. Journal of Transport Science and Engineering,2023,39(1):26-34.(in Chinese))
|
[18] |
于永堂,郑建国,张继文,等. 基于卡尔曼滤波与指数平滑法融合模型的沉降预测新方法[J]. 岩土工程学报,2021,43(增1):127-131.(YU Yongtang,ZHENG Jianguo,ZHANG Jiwen,et al. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering,2021,43(Supp.1):127-131.(in Chinese))
|
[19] |
马学宁,陈玉燕,王 旭. 高速铁路车站岔区高填方路基沉降组合预测研究[J]. 铁道学报,2023,45(1):105-113.(MA Xuening,CHEN Yuyan,WANG Xu. Study on settlement combination prediction of high fill subgrade in turnout area of high-speed railway station[J]. Journal of the China Railway Society,2023,45(1):105-113.(in Chinese))
|
[20] |
李 涛,杨腾宇,刘 波,等. 基于VMD-GRU的地铁隧道台阶法施工地表沉降预测[J]. 华中科技大学学报:自然科学版,2023,51(7):48-54.(LI Tao,YANG Tengyu,LIU Bo,et al. Surface settlement prediction of subway tunnels constructed by step method based on VMD-GRU[J]. Journal of Huazhong University of Science and Technology:Natural Science,2023,51(7):48-54.(in Chinese))
|
[21] |
MA X L,DAI Z,HE Z B,et al. Learning traffic as images:a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors,2017,17(4):818.
|
[22] |
ZHANG D,KABUKA M R. Combining weather condition data to predict traffic flow:a GRU-based deep learning approach[J]. IET Intelligent Transport Systems,2018,12(7):578-585.
|
[23] |
YAO R H,ZHANG W S,LONG M. DLW-Net model for traffic flow prediction under adverse weather[J]. Transportmetrica B-Transport Dynamics,2022,10(1):499-524.
|
[24] |
张文松,姚荣涵. 基于时空特性和组合深度学习的交通流参数估计[J]. 交通运输系统工程与信息,2021,21(1):82-89.(ZHANG Wensong,YAO Ronghan. Traffic flow parameters estimation based on spatio-temporal characteristics and hybrid deep learning[J]. Journal of Transportation Systems Engineering and Information Technology,2021,21(1):82-89.(in Chinese))
|