Vertical borehole shock-reflection blasting technique and its application in foundation excavation
LU Wenbo1,2,HU Haoran1,2,YAN Peng1,2,CHEN Yong3,RONG Yaojiu4,WANG Zhilin4
(1. State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan,Hubei 430072,China;2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering,Ministry of Education,Wuhan University,Wuhan,Hubei 430072,China;3. Sinohydro Engineering Bureau No. 8,Co.,Ltd.,Changsha,Hunan 410004,China;4. Baihetan Construction Department of China Three Gorges Construction Management Co.,Ltd.,Ningnan,Sichuan 615400,China)
In order to protect the breccia lava and the columnar jointed basalt of the Baihetan foundation,a bench blasting technique with shock-reflection structure arranged at the borehole was developed. The shock-reflection structure consists of spherical shock-reflection block with high sonic impedance and flexible cushion with low sonic impedance,the reflection of stress wave at the spherical shock-reflection block surface and the cushion effect of flexible cushioncan reduce the impact of the vertical borehole blasting on the foundation rock mass. The field experiment results at Baihetan hydropower station indicate that the shock-reflection blasting technique can effectively reduce the disturbance of dam foundation rock mass,and the vibration reduction rate is over 40% under the bottom ignition condition,which is conducive to the vibration control in the excavation process. And the shock-reflection blasting technique can effectively control the blast-induced damage in foundation rock mass, protect the foundation rock mass,and get a smooth foundation surface as the pre-splitting blasting or the smooth blasting. According to the field experiment results,the vertical borehole shock-reflection blasting technique has been successfully applied to the excavation of the Baihetan dam foundation and the plunge pool foundation,It has achieved good foundation forming effect,speed up the construction progress,and achieved significant economic benefits.
石安池,唐鸣发,周其健. 金沙江白鹤滩水电站柱状节理玄武岩岩体变形特性研究[J]. 岩石力学与工程学报,2008,27(10):2 079-2 086.(SHI Anchi,TANG Mingfa,ZHOU Qijian. Research of deformation characteristics of columnar jointed basalt at Bai-he-tan hydropower station on Jinsha River[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(10):2079-2086.(in Chinese))
[2]
倪绍虎,何世海,陈益民,等. 柱状节理玄武岩的破坏模式、破坏机制及工程对策[J]. 岩石力学与工程学报,2016,35(增1):3 064- 3 075.(NI Shaohu,HEShiha,CHEN Yimin,et al. The failure modes,failure mechanisms and countermeasures of columnar jointed basalt rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Supp.1):3 064-3 075.(in Chinese))
[3]
徐卫亚,郑文棠,石安池. 水利工程中的柱状节理岩体分类及质量评价[J]. 水利学报,2011,42(3):262-270.(XU Weiya,ZHENG Wentang,SHI Anchi. Classification and quality assessment of irregular columnar jointed basaltic rock mass for hydraulic engineering[J]. Journal of Hydraulic Engineering,2011,42(3):262-270.(in Chinese))
[4]
胡英国,卢文波,陈 明,等. 不同开挖方式下岩石高边坡损伤演化过程比较[J]. 岩石力学与工程学报,2013,32(6):1 176-1 184. (HUYingguo,LU Wenbo,CHEN Ming,et al. Comparison of damage evolution process of high rock slope excavated by different methods[J]. Journal of Rock Mechanics and Engineering,2013,32(6):1176-1184.(in Chinese))
[5]
杨小林,王树仁. 岩石爆破损伤模型及评述[J]. 工程爆破,1999,5(3):71-75.(YANG Xiaolin,WANG Shuren. Review on damage model of rock blasting[J]. Engineering Blasting,1999,5(3):71-75.(in Chinese))
[6]
GRADY D E,KIPP M E. Continuum modelling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1980,17(3):147-157
[7]
中华人民共和国行业标准编写组. SL47—94水工建筑物岩石基础开挖工程施工技术规范[S]. 北京:水利电力出版社,1995.(The Professional Standards Compilation Group of People¢sRepublic of China. SL47-94 Technical specification for construction of rock foundation excavation of hydraulic structures[S]. Beijing:Water Resources and Electric Power Press,1995.(in Chinese))
[8]
ZHANGY,LUW,CHENM,et al. Dam foundation excavation techniques in China:a review[J]. Journal of Rock Mechanics and Geotechnical Engineering,2013,5(6):460-467.
[9]
Gustafsson R. Swedish blasting technique[M].Gothenbure:SPI,1973:57-61.
[10]
LIU K,HAO H,LI X. Numerical analysis of the stability of abandoned cavities in bench blasting[J]. International Journal of Rock Mechanics and Mining Sciences,2017,92:30-39.
[11]
赵 根,文德钧,张正宇,等. 环向聚能药包研制及其在建基面开挖中的应用[J]. 爆破,2001,18(2):8-12.(ZHAOGen,WENDejun,ZHANG Zhengyu,et al. Proparation of annular cumulative charge and its application in foundationexcavation blasting[J]. Blasting,2001,18(2):8-12.(in Chinese))
[12]
吴新霞,赵 根,张正宇,等. 复合垫层理论研究及计算机优化设计[J]. 爆破器材,2000,29(4):8-11.(WU Xinxia,ZHAOGen,ZHANGZhengyu,et al. A study of the theory of duplicate cushion and optimized design by computer[J]. Explosive Materials,2000,29(4):8-11.(in Chinese))
[13]
PUGH E M,EICHELBERGER R J,ROSTOKER N. Theory of jet formation by charges with lined conical cavities[J]. Journal of Applied Physics,1952,23(5):537-542.
[14]
HAYES G A. Linear shaped-charge(LSC) collapse model[J]. Journal of Materials Science,1984,19(9):3049-3058.
[15]
BJARNHOLT G,HOLMBERG R,OUCHTERLONY F. System for contour blasting with directional fracture initiation(in Swedish) [J].International Journal of Rock Mechanics andMining Sciences andGeomechanics Abstracts,1983,20(4):129.
[16]
胡浩然,卢文波,席 浩,等. 聚-消能复合垫层保护下的水平建基面开挖方法研究[J]. 岩石力学与工程学报,2016,35(增2):4 129- 4 138.(HUHaoran,LU Wenbo,XI Hao,et al. Horizontal foundation surface excavation method under the protection of energy shaped and dissipation composite cushion[J]. Journal of Rock Mechanics and Engineering,2016,35(Supp.2):4 129-4 138.(in Chinese))
[17]
KOLSKYH. Stress waves in solids[M]. New York:Dover Publications,1963:38-39.
[18]
LIU L,CHEN M,LU W,et al. Effect of the Location of the Detonation Initiation Point for Bench Blasting[J]. Shock and Vibration,2015,20(2):50-61.