|
[1] HANSBO S. Consolidation of clay with special reference to influence of vertical sand drains[J]. Swedish Geotechnical Institute Proceeding,1960,(18):45–50.
[2] SLEPICKA F,Contribution to the solution of the filtration law[C]// Proceedings of the International Union of Geodesy and Geophysics,Commission of Subterranean Waters. [S. l.]:[s. n.],1960:245–258.
[3] 齐 添,谢康和,胡安峰,等. 萧山黏土非达西渗流性状的试验研究[J]. 浙江大学学报:工学版,2007,41(6):1 023–1 028.(QI Tian,XIE Kanghe,HU Anfeng,et al. Laboratorial study of non-Darcy seepage in Xiaoshan clay[J]. Journal of Zhejiang University:Engineering Science,2007,41(6):1 023–1 028.(in Chinese))
[4] DUBIN B,MOULIN G. Influence of a critical gradient on the consolidation of clays[C]// Proceedings of the Consolidation of Soils: Testing and Evaluation. West Conshohocken(PA):American Society for Testing and Materials,1986:354–377.
[5] HANSBO S. Deviation from Darcy¢s law observed in one-dimensional consolidation[J]. Geotechnique,2003,53(6):601–605.
[6] HANSBO S. Aspects of vertical drain design:Darcian or non-Darcian flow[J]. Geotechnique,1997,47(5):983–992.
[7] TEH C I,NIE X Y. Coupled consolidation theory with non-Darcian flow[J]. Computers and Geotechnics,2002,29(3):169–209.
[8] 谢海澜,武 强,赵增敏,等. 考虑非达西流的弱透水层固结计算[J]. 岩土力学,2007,28(5):1 061–1 065.(XIE Hailan,WU Qiang,ZHAO Zengmin,et al. Consolidation computation of aquitard considering non-Darcy flow[J]. Rock and Soil Mechanics,2007,28(5):1 061–1 065. (in Chinese))
[9] 刘忠玉,孙丽云,乐金朝,等. 基于非Darcy 渗流的饱和黏土一维固结理论[J]. 岩石力学与工程学报,2009,28(5):973–979.(LIU Zhongyu,SUN Liyun,YUE Jinchao,et al. One-dimensional consolidation theory of saturated clay based on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(5):973–979. (in Chinese))
[10] 鄂 建,陈 刚,孙爱荣. 考虑低速非Darcy 渗流的饱和黏性土一维固结分析[J]. 岩土工程学报,2009,31(7):1 115–1 119.(E Jian,CHEN Gang,SUN Airong. One-dimensional consolidation of saturated cohesive soil considering non-Darcy flows[J]. Chinese Journal of Geotechnical Engineering,2009,31(7):1 115–1 119.(in Chinese))
[11] 李传勋,谢康和,卢萌盟,等. 变荷载下基于指数形式渗流的一维固结分析[J]. 岩土力学,2011,32(2):553–559.(LI Chuanxun,XIE Kanghe,LU Mengmeng,et al. One-dimensional consolidation analysis considering exponential flow law and time-depending loading[J]. Rock and Soil Mechanics,2011,32(2):553–559.(in Chinese))
[12] DAVIS E H,RAYMOND G P. A nonlinear theory of consolidation[J]. Geotechnique,1965,15(2):161–173.
[13] 李冰河,谢康和,应宏伟,等. 初始有效应力沿深度变化的非线性一维固结半解析解[J]. 土木工程学报,1999,32(6):47–52.(LI Binghe,XIE Kanghe,YING Hongwei,et al. Semi-analytical solution of 1D nonlinear consolidation considering the initial effective stress distribution[J]. China Civil Engineering Journal,1999,32(6):47–52.(in Chinese))
[14] 刘忠玉,纠永志,乐金朝,等. 基于非Darcy渗流的饱和黏土一维非线性固结分析[J]. 岩石力学与工程学报,2010,29(11):2 348–2 355. (LIU Zhongyu,JIU Yongzhi,YUE Jinchao,et al. One-dimensional nonlinear consolidation analysis of saturated caly based on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(11):2 348–2 355.(in Chinese))
[15] 齐 添. 软土一维非线性固结理论与试验对比研究[博士学位论文][D]. 杭州:浙江大学,2008.(QI Tian. Theoretical and experimental studies on one dimensional nonlinear consolidation of soft soil[Ph. D. Thesis][D]. Hangzhou:Zhejiang University,2008.(in Chinese))
[16] 陆金甫. 偏微分方程数值解法[M]. 北京:清华大学出版社,2004:171–178.(LU Jinpu. Numerical method for partial differential equation[M]. Beijing:Tsinghua University Press,2004:171–178. (in Chinese))
[17] XIE K H,LI B H,Li Q L. A nonlinear theory of consolidation under time-dependent loading[C]// Proceedings of the 2nd International Conference on Soft Soil Engineering. Nanjing:Hohai University Press,1996:193–198.
|