Catastrophic landslides triggered by the 1950 Medog—Zayu Ms8.6 earthquake in Xizang Autonomous Region, China
YIN Yueping1*, GAO Shaohua1, WANG Wenpei1, LI Bin2, GAO Yang2
(1. Guide Center of Prevention Technology for Geo-Hazard, MNR, China Institute of Geo-Environment Monitoring, Beijing 100081, China; 2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China)
Abstract:On 15 August 1950, an Ms8.6 earthquake struck the Medog—Zayu region in the Eastern Himalayan syntaxis, with a maximum intensity of XII and an area with intensity≥VIII of about 2.19×105 km2. This mainshock-dominated event released seismic energy in a highly concentrated manner and triggered extensive landslides and related geological hazards. To systematically reveal the spatial distribution and the river-blocking patterns of coseismic landslides, we integrate multi-temporal historical imagery since 1961, archival records and field investigations to analyse the intensity distribution. For the high-intensity zone (X–XII) from Milin Wolong to downstream of Duden in the Namcha Barwa region, a coseismic landslide inventory is constructed for the first time, resulting in a dataset of 920 landslides. Quantitative analysis reveals that landslides predominantly occurred at 2 000–4 000 m elevation, on 20°–50° slopes, and within 4 km of active faults. The landslide distribution is strongly controlled by the main central thrust fault, the Motuo fault, and the Apalong fault. Based on statistical analysis and morphological characteristics, we delineate four types of earthquake-induced landslide-damming patterns: seated landslides, high-altitude remote hazards, whole gully-scale landslides and multi-landslide clusters, typified by the Gengbangla, Zelongnong Gully, the Jamaqiming Gully, and Zhaqu—Xirang landslide groups, respectively. The maximum duration of river blockage reached 15–16 hours. The unique geomorphic and tectonic environment of the Eastern Himalayan Syntaxis provides favorable conditions for the occurrence and evolution of high-altitude remote geological hazards. As the region is currently in a seismically active phase, it is critical to enhance research on the failure mechanisms and early warning of under extreme earthquake conditions, thereby improving disaster preparedness, resilience, and emergency response capabilities in the region.
[1] 西藏自治区科学技术委员会,国家地震局科技监测司. 西藏察隅当雄大地震[M]. 拉萨:西藏人民出版社,1988:1–166.(Xizang Autonomous Region Science and Technology Committee,Department of Science and Technology Monitoring,China Earthquake Administration. The great earthquake in Zayu and Dangxiong,Xizang[M]. Lhasa:Xizang People?s Publishing House,1988:1–166.(in Chinese))
[2] CHOUHAN R K S,GAUR V K,SINGH J. Investigations on the aftershock sequence of the great Assam earthquake of August 15,1950[J]. Annals of Geophysics,1974,27(1/2):245–266.
[3] BÅTH M,BENIOFF H. The aftershock sequence of the Kamchatka earthquake of November 4,1952[J]. Bulletin of the Seismological Society of America,1958,48(1):1–15.
[4] BEN-MENAHEM A,ABOODI E,SCHILD R. The source of the great Assam earthquake-an interplate wedge motion[J]. Physics of the Earth and Planetary Interiors,1974,9(4):265–289.
[5] TILLOTSON E. The great Assam earthquake of august I5,1950[J]. Nature,1951,167:128–130.
[6] 中国科学院地震工作委员会历史组. 中国地震资料年表(下册)[M]. 北京:科学出版社,1956:1 370–1 376.(Committee for Historical Seismic Data,Chinese Academy of Sciences. China earthquake historical data chronology(Vol. 2)[M]. Beijing:Science Press,1956:1 370–1 376. (in Chinese))
[7] 顾功叙,林庭煌,时振梁. 中国地震目录(公元前1831年公元—1969年)[M]. 北京:科学出版社,1983:1–862.(GU Gongxu,LIN Tinghuang,SHI Zhenliang. Catalogue of Chinese earthquakes(1831 BC–1969 AD)[M]. Beijing:Science Press,1983:1–862.(in Chinese))
[8] 西藏自治区科学技术委员会,西藏自治区档案馆. 西藏地震史料汇编[M]. 拉萨:西藏人民出版社,1982:1–586.(Xizang Autonomous Region Science and Technology Committee,Xizang Autonomous Region Archives. Compilation of historical earthquake data in Xizang[M]. Lhasa:Xizang People?s Publishing House,1982:1–586.(in Chinese))
[9] CHEN W P,MOLNAR P. Seismic moments of major earthquakes and the average rate of slip in central Asia[J]. Journal of Geophysical Research,1977,82(20):2 945–2 969.
[10] 詹慧丽,白 玲,陈治文. 1950年西藏墨脱—察隅8.6级地震震源参数、发震构造及周边地震活动性[J]. 地球与行星物理论评:中英文,2023,54(1):44–55.(HAN Huili,BAI Lin,CHEN Zhiwen. Source parameters,seismogenic structures of the 1950 Medog-Zayu MS8.6 earthquake and seismicity in the surrounding areas[J]. Reviews of Geophysics and Planetary Physics,2023,54(1):44–55.(in Chinese))
[11] COUDURIER-CURVEUR A,TAPPONNIER P,OKAL E,et al. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis[J]. Earth and Planetary Science Letters,2020,531:115928.
[12] 李保昆,刁桂苓,徐锡伟,等. 1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报,2015,58(11):4 254–4 265.(LI Baokun,DIAO Guiling,XU Xiwei,et al. Redetermination of the source parameters of the Zayü,Tibet M8.6 earthquake sequence in 1950[J]. Chinese Journal of Geophysics(in Chinese),2015,58(11):4 254– 4 265.(in Chinese))
[13] LOMBARDO L,OPITZ T,ARDIZZONE F,et al. Space-time landslide predictive modelling[J]. Earth-Science Reviews,2020,209:103318.
[14] 殷跃平,张永双. 汶川地震工程地质与地质灾害[M]. 北京:科学出版社,2013:1–545.(YIN Yueping,ZHANG Yongshuang. Engineering geology and geological disasters of Wenchuan earthquake[M]. Beijing:Science Press,2013:1–545.(in Chinese))
[15] 许 冲. 汶川地震滑坡分布规律与危险性评价[J]. 岩石力学与工程学报,2012,31(2):432.(XU Chong. Distribution law and risk assessment for Wenchuan earthquake-triggered landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(2):432.(in Chinese))
[16] 范宣梅,王 欣,戴岚欣,等. 2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报,2022,30(5): 1 504–1 516.(FAN Xuanmei,WANG Xin,DAI Lanxin,et al. Characteristics and spatial distribution pattern of Ms6.8 Luding Earthquake occurred on September 5,2022[J]. Journal of Engineering Geology,2022,30(5):1 504–1 516.(in Chinese))
[17] KARGEL J S,LEONARD G J,SHUGAR D H,et al. Geomorphic and geologic controls of geohazards induced by Nepal?s 2015 Gorkha earthquake[J]. Science,2016,351(6269):aac8353.
[18] POKHAREL B,ALVIOLI M,LIM S. Assessment of earthquake-induced landslide inventories and susceptibility maps using slope unit-based logistic regression and geospatial statistics[J]. Scientific Reports,2021,11(1):21 333.
[19] YIN Y P,LI B,WANG W P. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks[J]. Landslides,2015,12:537–547.
[20] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,2009,28(6):1 239–1 249.(HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1 239–1 249.(in Chinese))
[21] SHIN A,TAKASHI K,HIROYUKI F. Trampoline effect in extreme ground motion[J]. Science,2008,322(5902):727–730.
[22] 殷跃平,成余粮,王 军,等. 汶川地震触发大光包巨型滑坡遥感研究[J]. 工程地质学报,2011,19(5):674–684.(YIN Yueping,CHEN Yuliang,WANG Jun,et al. Remote sensing research on Daguangbao gigantic rockslide triggered by Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(5):674–684.(in Chinese))
[23] QI S W,HE J X,ZHAN Z F. A single surface slope effects on seismic response based on shaking table test and numerical simulation[J]. Engineering Geology,2022,306:106762.
[24] 殷跃平,王 猛,李 滨,等. 汶川地震大光包滑坡动力响应特征研究[J]. 岩石力学与工程学报,2012,31(10):1 969–1 982.(YIN Yueping,WANG Meng,LI Bin,et al. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1 969–1 982.(in Chinese))
[25] YIN Y P,ZHENG W M,LI X C,et al. Catastrophic landslides associated with the M8.0 Wenchuan earthquake[J]. Bulletin of Engineering Geology and the Environment,2011,70(1):15–32.
[26] 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1–18.(YIN Yueping,GAO Shaohua. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1–18.(in Chinese))
[27] 朱日祥,赵 盼,赵 亮. 新特提斯洋演化与动力过程[J]. 中国科学:地球科学,2022,52(1):1–25.(ZHU Rixiang,ZHAO Pan,ZHAO Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Science China Earth Sciences,2022,52(1):1–25.(in Chinese))
[28] SIMONS W J F,SOCQUET A,VIGNY C,et al. A decade of GPS in Southeast Asia:Resolving Sundaland motion and boundaries[J]. Journal of Geophysical Research:Solid Earth,2007,112(B6):B06420.
[29] LI J B,DING W W,LIN J,et al. Dynamic processes of the curved subduction system in Southeast Asia:A review and future perspective[J]. Earth-Science Reviews,2021,217:103647.
[30] TIMSINA P,HEARN T M,NI J F. Crust and mantle flow from central Tibetan Plateau to the Indo‐Burma subduction zone[J]. Journal of Geophysical Research:Solid Earth,2024,129(10):e2023JB027540.
[31] 殷跃平,李 滨,张田田,等. 印度查莫利“2·7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报,2021,32(3):1–8.(YIN Yueping,LI Bin,ZHANG Tiantian,et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli,India[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):1–8.(in Chinese))
[32] YIN Y P,LI B,GAO Y,et al. Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):66–101.
[33] 白 玲,宋博文,李国辉,等. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展,2019,34(6):629–639.(BAI Ling,SONG Bowen,LI Guohui,et al. Seismic activity in the Himalayan orogenic belt and its related geohazards[J]. Advances in Earth Science,2019,34(6):629–639.(in Chinese))
[34] DEMETS C,MERKOURIEV S,JADE S. High-resolution reconstructions and GPS estimates of India-Eurasia and India-Somalia plate motions:20 Ma to the present[J]. Geophysical Journal International,2020,220(2):1 149–1 171.
[35] 吴中海. 青藏高原陆陆碰撞-挤出活动构造体系控震作用:以1990年以来强震活动为例[J]. 地质力学学报,2024,30(2):189–205. (WU Zhonghai. The earthquake-controlling process of continental collision-extrusion active tectonic system around the Qinghai-Tibet Plateau:A case study of strong earthquakes since 1990[J]. Journal of Geomechanics,2024,30(2):189–205.(in Chinese))
[36] 许志琴,杨经绥,李海兵,等. 印度-亚洲碰撞大地构造[J]. 地质学报,2011,85(1):1–33.(XU Zhiqin,YANG Jingsui,LI Haibing,et al. On the Tectonics of the India-Asia Collision[J]. Acta Geologica Sinica,2011,85(1):1–33.(in Chinese))
[37] 张培震,邓起东,张竹琪,等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学:地球科学,2013,43(10):1 607–1 620. (ZHANG Peizhen,DENG Qidong,ZHANG Zhuqi,et al. Active faults,earthquake hazards and associated geodynamic processes in continental China(in Chinese)[J]. Scientia Sinica Terrae,2013,43(10):1 607–1 620.(in Chinese))
[38] KINGDON-WARD F. The Assam Earthquake of 1950[J]. The Geographical Journal,1953,119(2):169–182.
[39] KINGDON-WARD F. Aftermath of the great Assam earthquake of 1950[J]. The Geographical Journal,1955,121(3):290–303.
[40] KEEFER D K. Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta,California event[J]. Engineering geology,2000,58(3/4):231–249.
[41] RICHTER C F. Elementary seismology[M]. San Franeisco:W H Freeman,1958:3–739.
[42] BRUNE J N,KING C Y. Excitation of mantle Rayleigh waves of period 100 seconds as a function of magnitude[J]. Bulletin of the Seismological Society of America,1967,57(6):1 355–1 365.
[43] KVALE A. Seismic seiches in Norway and England during the Assam earthquake of August 15,1950[J]. Bulletin of the Seismological Society of America,1955,45(2):93–113.
[44] RAMACHANDRA RAO M B. A compilation of papers on the Assam earthquake of August 15,1950[M]. Calcutta:The Central Board of Geophysics,1953:1–112.
[45] AKIMA T. On dispersion curves of surface waves from the great Assam earthquake of August 15,1950[J]. Bulletin of Earthquake Research Institute,1952,29:237–257.
[46] EWING M,PRESS F. An investigation of mantle Rayleigh waves[J]. Bulletin of the Seismological Society of America,1954,44(2A):127–147.
[47] TOKSÖZ M N,BEN-MENAHEM A. Velocities of mantle Love and Rayleigh waves over multiple paths[J]. Bulletin of the Seismological Society of America,1963,53(4):741–764.
[48] BEN‐MENAHEM A. Observed attenuation and Q values of seismic surface waves in the upper mantle[J]. Journal of Geophysical Research,1965,70(18):4 641–4 651.
[49] 中国地震局监测预报司. 中国早期地震台历史地震图鉴(第3卷)[M]. 北京:地震出版社,2005:1–228.(Department of Earthquake Monitoring and Prediction,China Earthquake Administration. Historical seismograms atlas of early seismic stations in China(Vol. 3)[M]. Beijing:Seismological Press,2005:1–228.(in Chinese))
[50] RAGHUKANTH S T G. Simulation of strong ground motion during the 1950 Great Assam earthquake[J]. Pure and Applied Geophysics,2008,165:1 761–1 787.
[51] MOTAZEDIAN D,ATKINSON G M. Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bulletin of the Seismological Society of America,2005,95(3):995–1 010.
[52] BILHAM R,GAUR V K,MOLNAR P. Himalayan seismic hazard[J]. Science,2001,293(5534):1 442–1 444.
[53] 西藏察隅、当雄地震考察队. 当雄地震、察隅地震考察概况[J]. 四川地震,1986,(1):39–41.(Chayu-Dangxiong Earthquake Investigation Team. Overview of the Investigation on Dangxiong and Chayu Earthquakes[J]. Sichuan Earthquake,1986,(1):39–41.(in Chinese))
[54] PODDAR M C. Preliminary report of the Assam earthquake of 15th August,1950[J]. Journal of the Geological Society of India,1952,(2):11–13.
[55] REDDY D V,NAGABHUSHANAM P,KUMAR D,et al. The great 1950 Assam Earthquake revisited:field evidences of liquefaction and search for paleoseismic events[J]. Tectonophysics,2009,474(3/4):463–472.