[1] |
MEIDANI M,SHAFIEI A,HABIBAGAHI G,et al. Granule shape effect on the shear modulus and damping ratio of mixed gravel and clay[J]. Iranian Journal of Science and Technology Transaction B-Engineering,2008,32(B5):501-518.
|
[2] |
MA S K,HUANG H J,TIAN F P,et al. Investigation of dynamic characteristics and cumulative plastic strain prediction model of clay-fouled round gravel under cyclic subway loading[J]. Soil Dynamics and Earthquake Engineering,2023,174:108173.
|
[3] |
杨光华. 地基沉降计算的新方法及其应用[M]. 北京:科学出版社,2013:9-14.(YANG Guanghua. A new method for calculating foundation settlement and its application[M]. Beijing:Science Press,2013:9-14.(in Chinese))
|
[4] |
WU C Y,CHERN S G. Numerical simulation of deep excavation in grave layers[J]. Journal of Marine Science and Technology,2016,24(3):458-465.
|
[5] |
LIYANAPATHIRANA D S,NISHANTHAN R. Influence of deep excavation induced ground movements on adjacent piles[J]. Tunnelling and Underground Space Technology,2016,52:168-181.
|
[6] |
ROSCOE K H,SCHOFIELD A,THURAIRAJAH A. Yielding of clays in states wetter than critical[j]. Géotechnique,1963,13(3):211-240.
|
[7] |
HUANG Z H YANG L. Option assessment of retaining structures and statistic analysis of stability coefficients for pit excavation in round gravels[J]. Journal of Engineering Geology,2013,21(3):438-442.
|
[8] |
YANG G H. Review of progress and prospect of modern constitutive theories for soils[J]. Chinese Journal of Geotechnical Engineering,2018,40(8):1 363-1 372.
|
[9] |
杨光华,李广信. 从广义位势理论的角度看土的本构理论的研究[J]. 岩土工程学报,2007,29(4):594-597.(YANG Guanghua,LI Guangxin. Constitutive theory of soils based on the generalized potential theory[J]. Chinese Journal of Geotechnical Engineering,2007,29(4):594-597.(in Chinese))
|
[10] |
VERMEER P A. A double hardening model for sand[J]. Géotechnique,2015,28(4):413-433.
|
[11] |
李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报,2006,28(1):1-10.(LI Guangxin. Characteristics and development of Tsinghua Elasto-plastic model for soil[J]. Chinese Journal of Geotechnical Engineering,2006,28(1):1-10.(in Chinese))
|
[12] |
向大润. 土体弹塑性理论加载准则和计算模型探讨[J]. 岩土工程学报,1983,5(4):78-91.(XIANG Darun. Loading criteria and calculation model of soil elastic-plastic theory[J]. Chinese Journal of Geotechnical Engineering,1983,5(4):78-91.(in Chinese))
|
[13] |
黄文熙. 土的弹塑性应力-应变模型理论[J]. 清华大学学报:自然科学版,1979,(1):1-26.(HUANG Wenxi. Theory of elastoplastic stress-strain models for soils[J]. Journal of Tsinghua University:Science and Technology,1979,(1):1-26.(in Chinese))
|
[14] |
DUNCAN J M,CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division,1970,96:1 629-1 653.
|
[15] |
DONG L,WU N Y,ZHANG Y J,et al. Improved Duncan-Chang model for reconstituted hydrate-bearing clayey silt from the South China Sea[J]. Advances in Geo-Energy Research,2023,8(2):136-140.
|
[16] |
王 辉,周世琛,陈宇琪,等. 基于均匀化理论的水合物沉积物修正Duncan-Chang本构模型[J]. 中南大学学报:自然科学版,2021,52(9):3 251-3 263.(WANG Hui,ZHOU Shichen,CHEN Yuqi,et al. Modified Duncan-Chang model for hydrate-bearing sediments based on homogenization theory[J]. Journal of Central South University:Science and Technology,2021,52(9):3 251-3 263.(in Chinese))
|
[17] |
刘军定,李荣建,孙 萍,等. 基于结构性黄土联合强度的邓肯-张非线性本构模型[J]. 岩土工程学报,2018,40(增1):124-128.(LIU Junding,LI Rongjian,SUN Ping,et al. Duncan-Chang nonlinear constitutive model based on joint strength theory of structural loess[J]. Chinese Journal of Geotechnical Engineering,2018,40(Supp.1):124-128.(in Chinese))
|
[18] |
孙海忠. 基于细观理论的粗粒土剪胀性及本构模型[J]. 同济大学学报:自然科学版,2012,40(12):1 783-1 788.(SUN Haizhong. Dilation of coarse aggregates and its modeling based on micro theory[J]. Journal of Tongji University:Natural Science,2012,40 (12):1 783-1 788.(in Chinese))
|
[19] |
孙海忠,黄茂松. 考虑粗粒土应变软化特性和剪胀性的本构模型[J]. 同济大学学报:自然科学版,2009,37(6):727-732.(SUN Haizhong,HUANG Maosong. A constitutive model for coarse granular material incorporating both strain work softening and dilatant[J]. Journal of Tongji University:Natural Science,2009,37(6):727-732.(in Chinese))
|
[20] |
陈 晨. 沈阳圆砾土的扰动状态修正本构模型研究[J]. 河南理工大学学报:自然科学版,2017,36(6):125-131.(CHEN Chen. Research on modified constitutive model of Shenyang circular-gravel based on disturbed state[J]. Journal of Henan Polytechnic University:Natural Science,2017,36(6):125-131.(in Chinese))
|
[21] |
ZHANG C W,ZHOU X J,LU J F,et al. Modified constitutive model of sandy pebble soil based on disturbed state concept[J]. Arabian Journal of Geosciences,2022,15:587.
|
[22] |
KONG Z J,GUO Y H,MAO S L,et al. Experimental study on shear strength parameters of round gravel soils in plateau alluvial-lacustrine deposits and its application[J]. Sustainability,2023,15(5):3 954.
|
[23] |
唐开顺,谢雄耀,杨 磊. 圆砾土大型三轴实验力学特性研究[J]. 地下空间与工程学报,2014,10(3):580-585.(TANG Kaishun,XIE Xiongyao,YANG Lei. Research on mechanical characteristics of gravel soil based on large-scale triaxial tests[J]. Chinese Journal of Underground Space and Engineering,2014,10(3):580-585.(in Chinese))
|
[24] |
杨 松,程勇俊,吴珺华,等. 粗粒土粒径变化对强度和压缩特性的影响[J]. 云南农业大学学报:自然科学,2014,29(4):562-565.(YANG Song,CHENG Yongjun,WU Junhua,et al. Influence of coarse granular soil particle size on the strength and the compression characteristic[J]. Journal of Yunnan Agricultural University:Natural Science,2014,29(4):562-565.(in Chinese))
|
[25] |
KONDNER R L. Hyperbolic stress-strain response:congestive soils[J]. Journal of the Soil Mechanics and Foundation Division,1963,89(1):115-144.
|
[26] |
赵煜鑫. 粗粒土工程特性及本构模型分析[硕士学位论文][D]. 西安:西北农林科技大学,2020.(ZHAO Yuxin. Analysis on engineering properties and constitutive model of coarse-grained soil[M. S. Thesis][D]. Xi?an:Northwest A & F University,2020.(in Chinese))
|
[27] |
DUNCAN J M,BYRNE P,WONG K,et al. Strength,stress-strain and bulk modulus parameters for finiteelement analysis of stress and movement in soilmasses[R]. Berkeley:University of California,1980.
|
[28] |
李广信. 高等土力学[M]. 北京:清华大学出版社,2016:65-66.(LI Guangxin. Advanced soil mechanics[M]. Beijing:Tsinghua University Press,2016:65-66.(in Chinese))
|
[29] |
MENG F,ZHANG J S,CHEN X B,et al. Deformation characteristics of coarse-grained soil with various gradations[J]. Journal of Central South University,2014,21(6):2 469-2 476.
|